Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 620: 121725, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405282

RESUMO

Choroidal neovascularization (CNV) is a prevalent vision-threatening vascular disorder in aging population. CNV is associated with several diseases in the posterior segment of the eye such as age-related macular degeneration (AMD). In this study we developed sunitinib-loaded liposomes to block the neovascularization signalling pathway through inhibition of tyrosine kinase of vascular endothelial growth factor receptors (VEGFRs). Liposomal sunitinib formulations were prepared by thin film hydration method and studied for their encapsulation efficiency (EE), loading capacity (LC) and drug release profile in buffer andvitreous. Our finding showed that the liposomes (mean size 104 nm) could effectively entrap sunitinib (EE ≈ 95%) at relatively high loading capacity (LC ≈ 5%) and release sunitinib over at least 3 days. Intravitreal sunitinib-loaded liposomes revealed inhibitory effect on established neovascularization in laser-induced CNV mouse model while the intravitreal injection of sunitinib solubilized with cyclodextrin was inefficient in management of neovascularization. Accordingly, liposomal sunitinib is a promising drug delivery system that should be further studied to inhibit the CNV related to AMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Animais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Injeções Intravítreas , Lipossomos/uso terapêutico , Degeneração Macular/tratamento farmacológico , Camundongos , Sunitinibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Cell Physiol ; 235(12): 9185-9210, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452052

RESUMO

In recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine. Considering preclinical studies, MSCs can modify immune reactions during tissue repair and restoration, providing suitable milieu for tissue recovery; on the other hand, they can be differentiated into comprehensive types of the body cells, such as osteoblast, chondrocyte, hepatocyte, cardiomyocyte, fibroblast, and neural cells. Though a large number of studies have investigated MSCs capacities in regenerative medicine in varied animal models, the oncogenic capability of unregulated MSCs differentiation must be more assessed to enable their application in the clinic. In the current review, we provide a brief overview of MSCs sources, isolation, and expansion as well as immunomodulatory activities. More important, we try to collect and discuss recent preclinical and clinical research and evaluate current challenges in the context of the MSC-based cell therapy for regenerative medicine.


Assuntos
Células da Medula Óssea/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Medicina Regenerativa/métodos
3.
Anticancer Agents Med Chem ; 19(17): 2140-2153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736448

RESUMO

BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) is limited to produce AgNPs with only relatively low concentrations, and is unsuitable for large-scale productions. The use of Myrtus communis (MC) leaf methanolic extract (rich in hydrolyzable tannins) has been recommended to resolve the issues related to the aggregation of nanoparticles at high concentrations of silver ions with added facet of antioxidant properties. METHODS: The produced highly concentrated MC-AgNPs were characterized by using imaging and spectroscopic methods. Subsequently, antioxidant, anticancer and antifungal activities of the nanoparticles were evaluated. RESULTS: The thermogravimetric analysis and energy dispersive spectroscopy quantitative results suggested that the nanoparticles are biphasic in nature (bio-molecule + Ag0) and layered in structure, suggesting the formation of nanoparticles through a different mechanism than those described in the literature. MC-AgNPs showed greater scavenging activity of nitric oxide and iron (II) chelating ability than the extract. It also showed good reducing power compared to the standard antioxidant. Remarkable anticancer activity of MC-AgNPs (IC50 = 5.99µg/mL) was found against HCT-116 (human colon carcinoma) cell lines after 24h exposure with a therapeutic index value 2-fold higher than the therapeutic index of standard doxorubicin. Furthermore, distinct antifungal activity (MIC = 4µg/mL) was found against Candida krusei. CONCLUSION: The current method outperforms the existing methods because it produces a large amount of multifunctional nanoscale hybrid materials more efficiently using natural sources; thus, it may be used for diverse biomedical applications.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Candida/efeitos dos fármacos , Nanopartículas/química , Prata/farmacologia , Antifúngicos/química , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Íons/química , Íons/farmacologia , Testes de Sensibilidade Microbiana , Oxirredução , Prata/química
4.
Eur J Pharm Biopharm ; 140: 91-99, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085311

RESUMO

Nucleic acid delivery to the eye is a promising treatment strategy for many retinal disorders. In this manuscript, retinal gene delivery with non-coated and chondroitin sulphate (CS) coated amphipathic and cationic peptides was tested. The transfection and gene knockdown efficiencies were evaluated in different retinal pigment epithelial (RPE) cell models including both dividing and differentiated cells. In addition, the mobility of peptide-based gene delivery systems was examined in porcine vitreous by particle tracking analysis. The results indicate that amphipathic and cationic peptides are safe in vitro and are capable of high transgene expression and gene knockdown in dividing cells. We further demonstrate that incorporation of CS improves the efficiency of gene delivery of peptide-based systems. Most importantly, the transgene expression mediated by both non-coated and CS coated peptides was high in differentiated as well as in human primary RPE cells which are typically difficult to transfect. Coating of peptide-based gene delivery systems with CS improved diffusion in the vitreous and enhanced the stability of the polyplexes. The results indicate that a peptide-based system can be fine-tuned as a promising approach for retinal gene delivery.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Ácidos Nucleicos/administração & dosagem , Retina/efeitos dos fármacos , Pigmentos da Retina/metabolismo , Animais , Cátions/administração & dosagem , Linhagem Celular , Células Epiteliais/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Suínos , Transfecção/métodos
5.
Bioimpacts ; 8(4): 241-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30397579

RESUMO

Introduction: Sorafenib (SFB) is an FDA-approved chemotherapeutic agent with a high partition coefficient (log P = 4.34) for monotherapy of hepatocellular carcinoma (HCC). The oral bioavailability is low and variable, so it was aimed to study the application of the polymeric nanoassembly of cholesterol conjugates of branched polyethyleneimine (PEI) for micellar solubilization of SFB and to investigate the impact of the polymer PEGylation on the physicochemical and cellular characteristics of the lipopolymeric dispersions. Methods: Successful synthesis of cholesterol-PEI lipopolymers, either native or PEGylated, was confirmed by FTIR, 1H-NMR, pyrene assay methods. The nanoassemblies were also characterized in terms of morphology, particle size distribution and zeta-potential by TEM and dynamic light scattering (DLS). The SFB loading was optimized using general factorial design. Finally, the effect of particle characteristics on cellular uptake and specific cytotoxicity was investigated by flow cytometry and MTT assay in HepG2 cells. Results: Transmission electron microscopy (TEM) showed that PEGylation of the lipopolymers reduces the size and changes the morphology of the nanoassembly from rod-like to spherical shape. However, PEGylation of the lipopolymer increased critical micelle concentration (CMC) and reduced the drug loading. Moreover, the particle shape changes from large rods to small spheres promoted the cellular uptake and SFB-related cytotoxicity. Conclusion: The combinatory effects of enhanced cellular uptake and reduced general cytotoxicity can present PEGylated PEI-cholesterol conjugates as a potential carrier for delivery of poorly soluble chemotherapeutic agents such as SFB in HCC that certainly requires further investigations in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA