Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2475: 133-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451754

RESUMO

The ability to study the role of specific genes in endothelial cell biology is made possible by our ability to modulate their expression through siRNA or knockout technologies. However, many in vitro protocols, particularly those of a biochemical nature, require large numbers of endothelial cells. These types of analyses are encumbered by the need to repeatedly produce and characterize primary endothelial cell cultures and can be greatly facilitated by the use of immortalized microvascular endothelial cells. However, we have found that the manipulation of gene expression in these cells is not always straight forward. Here we describe how we alter gene expression in polyoma middle T antigen immortalized microvascular endothelial cells isolated from wild-type and genetically modified mice to study the role of cell adhesion molecules in downstream assays.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Cancer Res Commun ; 2(12): 1626-1640, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36970722

RESUMO

Neuropilin (NRP) expression is highly correlated with poor outcome in multiple cancer subtypes. As known coreceptors for VEGFRs, core drivers of angiogenesis, past investigations have alluded to their functional roles in facilitating tumorigenesis by promoting invasive vessel growth. Despite this, it remains unclear as to whether NRP1 and NRP2 act in a synergistic manner to enhance pathologic angiogenesis. Here we demonstrate, using NRP1 ECKO , NRP2 ECKO , and NRP1/NRP2 ECKO mouse models, that maximum inhibition of primary tumor development and angiogenesis is achieved when both endothelial NRP1 and NRP2 are targeted simultaneously. Metastasis and secondary site angiogenesis were also significantly inhibited in NRP1/NRP2 ECKO animals. Mechanistic studies revealed that codepleting NRP1 and NRP2 in mouse-microvascular endothelial cells stimulates rapid shuttling of VEGFR-2 to Rab7+ endosomes for proteosomal degradation. Our results highlight the importance of targeting both NRP1 and NRP2 to modulate tumor angiogenesis. Significance: The findings presented in this study demonstrate that tumor angiogenesis and growth can be arrested completely by cotargeting endothelial NRP1 and NRP2. We provide new insight into the mechanisms of action regulating NRP-dependent tumor angiogenesis and signpost a novel approach to halt tumor progression.


Assuntos
Neoplasias , Neuropilina-1 , Animais , Camundongos , Neuropilina-1/genética , Neuropilina-2/genética , Células Endoteliais/metabolismo , Neovascularização Patológica/genética , Neoplasias/genética
3.
FASEB J ; 35(8): e21679, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314542

RESUMO

The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.


Assuntos
Actinas/metabolismo , Células Endoteliais , Integrina alfa5/metabolismo , Pulmão/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neuropilina-2/fisiologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA