Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cytotherapy ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38625071

RESUMO

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.

2.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38298420

RESUMO

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

3.
Nat Immunol ; 24(12): 2121-2134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945821

RESUMO

The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.


Assuntos
Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Complexo CD3 , Ligantes , Peptídeos , Linfócitos T
4.
Cancer Cell ; 41(11): 1841-1843, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37832553

RESUMO

Chimeric antigen receptor (CAR) T cell therapies are limited by antigen escape and on-target/off-tumor toxicity. In addressing these challenges, Haubner et al. develop an "IF-BETTER" strategy. Their combinatorial chimeric co-stimulatory receptor with an attenuated CAR enhances acute myeloid leukemia (AML) killing while protecting healthy progenitors, highlighting the potential to leverage cooperative CAR designs.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Imunoterapia Adotiva
5.
Nat Immunol ; 24(9): 1434-1442, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500886

RESUMO

Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.


Assuntos
Apoptose , Linfócitos T Citotóxicos , Apoptose/genética , Perforina , Granzimas
6.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37217245

RESUMO

The expansion and persistence of chimeric antigen receptor (CAR) T-cells in patients are associated with response, toxicity, and long-term efficacy. As such, the tools used to detect CAR T-cells following infusion are fundamental for optimizing this therapeutic approach. Nevertheless, despite the critical value of this essential biomarker, there is significant variability in CAR T-cell detection methods as well as the frequency and intervals of testing. Furthermore, heterogeneity in the reporting of quantitative data adds layers of complexity that limit intertrial and interconstruct comparisons. We sought to assess the heterogeneity of CAR T-cell expansion and persistence data in a scoping review using the PRISMA-ScR checklist. Focusing on 21 clinical trials from the USA, featuring a Food and Drug Administration-approved CAR T-cell construct or one of its predecessors, 105 manuscripts were screened and 60 were selected for analysis, based on the inclusion of CAR T-cell expansion and persistence data. Across the array of CAR T-cell constructs, flow cytometry and quantitative PCR were identified as the two primary techniques for detecting CAR T-cells. However, despite apparent uniformity in detection techniques, the specific methods used were highly variable. Detection time points and the number of evaluated time points also ranged markedly and quantitative data were often not reported. To evaluate whether subsequent manuscripts from a trial resolved these issues, we analyzed all subsequent manuscripts reporting on the 21 clinical trials, recording all expansion and persistence data. While additional detection techniques-including droplet digital PCR, NanoString, and single-cell RNA sequencing-were reported in follow-up publications, inconsistencies with respect to detection time points and frequency remained, with a significant amount of quantitative data still not readily available. Our findings highlight the critical need to establish universal standards for reporting on CAR T-cell detection, especially in early phase studies. The current reporting of non-interconvertible metrics and limited provision of quantitative data make cross-trial and cross-CAR T-cell construct comparisons extremely challenging. Establishing a standardized approach for collecting and reporting data is urgently needed and would represent a substantial advancement in the ability to improve outcomes for patients receiving CAR T-cell therapies.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Biomarcadores , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Padrões de Referência , Estados Unidos
7.
Blood ; 141(19): 2316-2329, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36790505

RESUMO

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, ß, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.


Assuntos
Terapia Genética , Vetores Genéticos , Camundongos , Animais , Vetores Genéticos/genética , Transgenes , Plasmídeos , Terapia Genética/métodos , Receptores de Antígenos de Linfócitos T/genética , Dependovirus/genética , Integração Viral
8.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36735910

RESUMO

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Assuntos
Proteômica , Espermidina , Humanos , Espermidina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Diferenciação Celular , Fator de Iniciação de Tradução Eucariótico 5A
9.
Clin Cancer Res ; 29(2): 341-348, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36302175

RESUMO

PURPOSE: Succinate dehydrogenase (dSDH)-deficient tumors, including pheochromocytoma/paraganglioma, hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinoma (HLRCC-RCC), and gastrointestinal stromal tumors (GIST) without KIT or platelet-derived growth factor receptor alpha mutations are often resistant to cytotoxic chemotherapy, radiotherapy, and many targeted therapies. We evaluated guadecitabine, a dinucleotide containing the DNA methyltransferase inhibitor decitabine, in these patient populations. PATIENTS AND METHODS: Phase II study of guadecitabine (subcutaneously, 45 mg/m2/day for 5 consecutive days, planned 28-day cycle) to assess clinical activity (according to RECISTv.1.1) across three strata of patients with dSDH GIST, pheochromocytoma/paraganglioma, or HLRCC-RCC. A Simon optimal two-stage design (target response rate 30% rule out 5%) was used. Biologic correlates (methylation and metabolites) from peripheral blood mononuclear cells (PBMC), serum, and urine were analyzed. RESULTS: Nine patients (7 with dSDH GIST, 1 each with paraganglioma and HLRCC-RCC, 6 females and 3 males, age range 18-57 years) were enrolled. Two patients developed treatment-limiting neutropenia. No partial or complete responses were observed (range 1-17 cycles of therapy). Biologic activity assessed as global demethylation in PBMCs was observed. No clear changes in metabolite concentrations were observed. CONCLUSIONS: Guadecitabine was tolerated in patients with dSDH tumors with manageable toxicity. Although 4 of 9 patients had prolonged stable disease, there were no objective responses. Thus, guadecitabine did not meet the target of 30% response rate across dSDH tumors at this dose, although signs of biologic activity were noted.


Assuntos
Neoplasias das Glândulas Suprarrenais , Produtos Biológicos , Carcinoma de Células Renais , Tumores do Estroma Gastrointestinal , Neoplasias Renais , Paraganglioma , Feocromocitoma , Masculino , Feminino , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Succinato Desidrogenase/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Tumores do Estroma Gastrointestinal/genética , Leucócitos Mononucleares/metabolismo , Paraganglioma/tratamento farmacológico , Paraganglioma/genética
10.
Front Immunol ; 13: 898827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248829

RESUMO

Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.


Assuntos
Deficiência de Ácido Ascórbico , Mustelidae , Escorbuto , Animais , Ácido Ascórbico/farmacologia , Deficiência de Ácido Ascórbico/genética , Eritropoese , Feminino , Glucose , Humanos , L-Gulonolactona Oxidase/genética , Camundongos , Gravidez , Vitaminas
11.
Redox Biol ; 56: 102431, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988446

RESUMO

YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells.


Assuntos
Cisteína , Mitocôndrias , Cisteína/metabolismo , Mesoderma/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35852863

RESUMO

Chimeric antigen receptor (CAR) T cell therapies targeting single antigens have performed poorly in clinical trials for solid tumors due to heterogenous expression of tumor-associated antigens (TAAs), limited T cell persistence, and T cell exhaustion. Here, we aimed to identify optimal CARs against glypican 2 (GPC2) or CD276 (B7-H3), which were highly but heterogeneously expressed in neuroblastoma (NB), a lethal extracranial solid tumor of childhood. First, we examined CAR T cell expansion in the presence of targets by digital droplet PCR. Next, using pooled competitive optimization of CAR by cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), termed P-COCC, we simultaneously analyzed protein and transcriptome expression of CAR T cells to identify high-activity CARs. Finally, we performed cytotoxicity assays to identify the most effective CAR against each target and combined the CARs into a bicistronic "OR" CAR (BiCisCAR). BiCisCAR T cells effectively eliminated tumor cells expressing GPC2 or CD276. Furthermore, the BiCisCAR T cells demonstrated prolonged persistence and resistance to exhaustion when compared with CARs targeting a single antigen. This study illustrated that targeting multiple TAAs with BiCisCAR may overcome heterogenous expression of target antigens in solid tumors and identified a potent, clinically relevant CAR against NB. Moreover, our multimodal approach integrating competitive expansion, P-COCC, and cytotoxicity assays is an effective strategy to identify potent CARs among a pool of candidates.


Assuntos
Neuroblastoma , Receptores de Antígenos Quiméricos , Antígenos de Neoplasias/genética , Antígenos B7 , Linhagem Celular Tumoral , Glipicanas/genética , Humanos , Imunoterapia Adotiva , Neuroblastoma/genética , Neuroblastoma/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Transplant Cell Ther ; 28(8): 426-445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662591

RESUMO

Alloreactive and autoimmune responses after allogeneic hematopoietic cell transplantation can occur in nonclassical chronic graft-versus-host disease (chronic GVHD) tissues and organ systems or manifest in atypical ways in classical organs commonly affected by chronic GVHD. The National Institutes of Health (NIH) consensus projects were developed to improve understanding and classification of the clinical features and diagnostic criteria for chronic GVHD. Although still speculative whether atypical manifestations are entirely due to chronic GVHD, these manifestations remain poorly captured by the current NIH consensus project criteria. Examples include chronic GVHD impacting the hematopoietic system as immune mediated cytopenias, endothelial dysfunction, or as atypical features in the musculoskeletal system, central and peripheral nervous system, kidneys, and serous membranes. These purported chronic GVHD features may contribute significantly to patient morbidity and mortality. Most of the atypical chronic GVHD features have received little study, particularly within multi-institutional and prospective studies, limiting our understanding of their frequency, pathogenesis, and relation to chronic GVHD. This NIH consensus project task force report provides an update on what is known and not known about the atypical manifestations of chronic GVHD while outlining a research framework for future studies to be undertaken within the next 3 to 7 years. We also provide provisional diagnostic criteria for each atypical manifestation, along with practical investigation strategies for clinicians managing patients with atypical chronic GVHD features.


Assuntos
Doença Enxerto-Hospedeiro , Doença Crônica , Consenso , Doença Enxerto-Hospedeiro/diagnóstico , Humanos , National Institutes of Health (U.S.) , Estudos Prospectivos , Estados Unidos
15.
J Magn Reson ; 340: 107234, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617919

RESUMO

T cells engineered to express artificial chimeric antigen receptors (CARs) that selectively target tumor-specific antigens or deleterious cell types offer transformative therapeutic possibilities. CARs contain an N-terminal extracellular antigen recognition domain, C-terminal intracellular signal transduction domains, and connecting hinge and transmembrane regions, each of which have been varied to optimize targeting and minimize toxicity. We find that a CD22-targeting CAR harboring a CD8α hinge (H) exhibits greater cytotoxicity against a low antigen density CD22+ leukemia as compared to an equivalent CAR with a CD28 H. We therefore studied the biophysical and dynamic properties of the CD8α H by nuclear magnetic resonance (NMR) spectroscopy. We find that a large region of the CD8α H undergoes dynamic chemical exchange between distinct and observable states. This exchanging region contains proline residues dispersed throughout the sequence that undergo cis-trans isomerization. Up to four signals of differing intensity are observed, with the most abundantly populated being intrinsically disordered and with all prolines in the trans isomerization state. The lesser populated states all contain cis prolines and evidence of local structural motifs. Altogether, our data suggest that the CD8α H lacks long-range structural order but has local structural motifs that transiently exchange with a dominant disordered state. We propose that structural plasticity and local structural motifs promoted by cis proline states within the CD8α H are important for relaying and amplifying antigen-binding effects to the transmembrane and signal transduction domains.


Assuntos
Prolina , Sequência de Aminoácidos , Isomerismo , Espectroscopia de Ressonância Magnética , Prolina/química
16.
Blood ; 140(5): 451-463, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35605184

RESUMO

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Síndrome da Liberação de Citocina , Citocinas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Recidiva , Linfócitos T
17.
Artigo em Inglês | MEDLINE | ID: mdl-35383046

RESUMO

Head and neck cancers frequently carry a poor prognosis and are commonly associated with complex medical needs and symptoms. Timing of referral to specialist palliative care teams (SPCTs) is challenging. We present the case of a 57-year-old woman with locally highly advanced head and neck cancer. The patient had highly complex medical needs including a tracheostomy to maintain airway patency, artificial feeds via jejunostomy and impaired communication due to hearing loss, tracheostomy and fatigue. She required support with advance care planning and complex symptom management of pain related to abdominal skin excoriation due to leakage of gastric contents; bleeding of necrotic tumour; anxiety and discomfort due to displacement of tracheostomy. Care by an integrated SPCT allowed smooth transition from hospital to community settings with smooth ongoing management despite highly complex needs. This complex symptom management included tracheostomy removal in the home towards the end of life.

18.
Cell Rep ; 37(5): 109911, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731632

RESUMO

Suppressive regulatory T cell (Treg) differentiation is controlled by diverse immunometabolic signaling pathways and intracellular metabolites. Here we show that cell-permeable α-ketoglutarate (αKG) alters the DNA methylation profile of naive CD4 T cells activated under Treg polarizing conditions, markedly attenuating FoxP3+ Treg differentiation and increasing inflammatory cytokines. Adoptive transfer of these T cells into tumor-bearing mice results in enhanced tumor infiltration, decreased FoxP3 expression, and delayed tumor growth. Mechanistically, αKG leads to an energetic state that is reprogrammed toward a mitochondrial metabolism, with increased oxidative phosphorylation and expression of mitochondrial complex enzymes. Furthermore, carbons from ectopic αKG are directly utilized in the generation of fatty acids, associated with lipidome remodeling and increased triacylglyceride stores. Notably, inhibition of either mitochondrial complex II or DGAT2-mediated triacylglyceride synthesis restores Treg differentiation and decreases the αKG-induced inflammatory phenotype. Thus, we identify a crosstalk between αKG, mitochondrial metabolism and triacylglyceride synthesis that controls Treg fate.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Fibrossarcoma/genética , Fibrossarcoma/imunologia , Fibrossarcoma/metabolismo , Fibrossarcoma/terapia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Humanos , Imunoterapia Adotiva , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo
19.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531250

RESUMO

BACKGROUND: Successful development of chimeric antigen receptor (CAR) T cell immunotherapy for children and adults with relapsed/refractory acute myeloid leukemia (AML) is highly desired given their poor clinical prognosis and frequent inability to achieve cure with conventional chemotherapy. Initial experiences with CD19 CAR T cell immunotherapy for patients with B-cell malignancies highlighted the critical impact of intracellular costimulatory domain selection (CD28 vs 4-1BB (CD137)) on CAR T cell expansion and in vivo persistence that may impact clinical outcomes. However, the impact of costimulatory domains on the efficacy of myeloid antigen-directed CAR T cell immunotherapy remains unknown. METHODS: In this preclinical study, we developed six CAR constructs targeting CD33, a highly expressed and validated AML target, comprised of one of three single-chain variable fragments with CD3ζ and either CD28 or 4-1BB costimulatory domains. We systematically compared the preclinical in vitro and in vivo efficacy of T cells lentivirally transduced with CD33 CAR constructs (CD33CARTs) against human AML. RESULTS: We observed potent in vitro cytokine production and cytotoxicity of CD33CARTs incubated with human CD33+ AML cell lines, as well as robust in vivo antileukemia activity in cell line and childhood AML patient-derived xenograft (PDX) models. Gemtuzumab-based CD33CARTs were unexpectedly toxic in vivo in animal models despite observed in vitro anti-leukemia activity. CD28-based CD33CARTs consistently induced more robust inhibition of leukemia proliferation in AML cell line and PDX models than did 4-1BB-based CD33CARTs. A 'best-in-class' lintuzumab-CD28/CD3ζ CAR construct was thus selected for clinical translation. CONCLUSIONS: CD33 is a critical antigen for potential immunotherapeutic targeting in patients with AML. Based on this rigorous preclinical evaluation, our validated clinical grade lintuzumab-CD28/CD3ζ CD33CART immunotherapy is now under evaluation in a first-in-child/first-in-human phase 1 clinical trial for children and adolescents/young adults with relapsed/refractory AML. TRIAL REGISTRATION NUMBER: clinicaltrials.gov; NCT03971799.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores de Antígenos Quiméricos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T/imunologia , Animais , Feminino , Humanos , Masculino , Camundongos
20.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34503088

RESUMO

CD19-directed CAR T-cells have been remarkably successful in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and transformed follicular lymphoma (t-FL). In this cohort study, we treated 60 patients with axicabtagene ciloleucel or tisagenlecleucel. Complete and partial metabolic responses (CMR/PMR) were obtained in 40% and 23% of patients, respectively. After 6.9 months of median follow-up, median progression-free survival (mPFS) and overall survival (mOS) were estimated at 3.1 and 12.3 months, respectively. Statistical analyses revealed that CMR, PFS, and OS were all significantly associated with age-adjusted international prognostic index (aaIPI, p < 0.05). T-cell subset phenotypes in the apheresis product tended to correlate with PFS. Within the final product, increased percentages of both CD4 and CD8 CAR+ effector memory cells (p = 0.02 and 0.01) were significantly associated with CMR. Furthermore, higher CMR/PMR rates were observed in patients with a higher maximal in vivo expansion of CAR T-cells (p = 0.05) and lower expression of the LAG3 and Tim3 markers of exhaustion phenotype (p = 0.01 and p = 0.04). Thus, we find that aaIPI at the time of infusion, phenotype of the CAR T product, in vivo CAR T-cell expansion, and low levels of LAG3/Tim3 are associated with the efficacy of CAR T-cell therapy in DLBCL patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA