Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 318(3): E417-E429, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910028

RESUMO

Muscle anabolic resistance to dietary protein is associated with obesity and insulin resistance. However, the contribution of excess consumption of fat to anabolic resistance is not well studied. The aim of these studies was to test the hypothesis that acute and short-term dietary fat overload will impair the skeletal muscle protein synthetic response to dietary protein ingestion. Eight overweight/obese men [46.4 ± 1.4 yr, body mass index (BMI) 32.3 ± 5.4 kg/m2] participated in the acute feeding study, which consisted of two randomized crossover trials. On each occasion, subjects ingested an oral meal (with and without fat emulsion), 4 h before the coingestion of milk protein, intrinsically labeled with [1-13C]phenylalanine, and dextrose. Nine overweight/obese men (44.0 ± 1.7 yr, BMI 30.1 ± 1.1 kg/m2) participated in the chronic study, which consisted of a baseline, 1-wk isocaloric diet, followed by a 2-wk high-fat diet (+25% energy excess). Acutely, incorporation of dietary amino acids into the skeletal muscle was twofold higher (P < 0.05) in the lipid trial compared with control. There was no effect of prior lipid ingestion on indices of insulin sensitivity (muscle glucose uptake, pyruvate dehydrogenase complex activity, and Akt phosphorylation) in response to the protein/dextrose drink. Fat overfeeding had no effect on muscle protein synthesis or glucose disposal in response to whey protein ingestion, despite increased muscle diacylglycerol C16:0 (P = 0.06) and ceramide C16:0 (P < 0.01) levels. Neither acute nor short-term dietary fat overload has a detrimental effect on the skeletal muscle protein synthetic response to dietary protein ingestion in overweight/obese men, suggesting that dietary-induced accumulation of intramuscular lipids per se is not associated with anabolic resistance.


Assuntos
Gorduras na Dieta/farmacologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Período Pós-Prandial , Aminoácidos/metabolismo , Estudos Cross-Over , Glucose/metabolismo , Humanos , Hiperfagia , Resistência à Insulina , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas do Leite/farmacologia , Músculo Esquelético/efeitos dos fármacos
2.
Exp Physiol ; 103(6): 876-883, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663541

RESUMO

NEW FINDINGS: What is the central question of this study? The role of FGF21 as an exercise-induced myokine remains controversial. The aim of this study was to determine whether eccentric exercise would augment the release of FGF21 and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. What is the main finding and its importance? Eccentric exercise does not release total or bioactive FGF21 from human skeletal muscle. However, exercise releases its regulatory enzyme, FAP, from tissue(s) other than muscle, which might play a role in the inactivation of FGF21. ABSTRACT: The primary aim of the investigation was to determine whether eccentric exercise would augment the release of the myokine fibroblast growth factor 21 (FGF21) and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. Physically active young healthy male volunteers (age 25.0 ± 10.7 years; body mass index 23.1 ± 7.9 kg m-2 ) completed three sets of 25 repetitions (with 5 min rest in between) of single-leg maximal eccentric contractions using their non-dominant leg, whilst the dominant leg served as a control. Arterialized blood samples from a hand vein and deep venous blood samples from the common femoral vein of the exercised leg, along with blood flow of the superficial femoral artery using Doppler ultrasound, were obtained before and after each exercise bout and every 20 min during the 3 h recovery period. Muscle biopsy samples were taken at baseline, immediately and 3 and 48 h postexercise. The main findings showed that there was no significant increase in total or bioactive FGF21 secreted from skeletal muscle into the systemic circulation in response to exercise. Furthermore, skeletal muscle FGF21 protein content was unchanged in response to exercise. However, there was a significant increase in arterialized and venous FAP concentrations, with no apparent contribution to its release from the exercised leg. These findings raise the possibility that the elevated levels of FAP might play a role in the inactivation of FGF21 during exercise.


Assuntos
Exercício Físico/fisiologia , Fatores de Crescimento de Fibroblastos/sangue , Gelatinases/sangue , Proteínas de Membrana/sangue , Serina Endopeptidases/sangue , Adulto , Endopeptidases , Humanos , Masculino , Proteínas Musculares/sangue , Músculo Esquelético/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA