Assuntos
Micose Fungoide , Neoplasias Cutâneas , Humanos , Biomarcadores Tumorais , Proteômica , Fita Cirúrgica , PeleRESUMO
Injury of the skin from exposure to toxic chemicals leads to the release of inflammatory mediators and the recruitment of immune cells. Nitrogen mustard (NM) and other alkylating agents cause severe cutaneous damage for which there are limited treatment options. Here, we show that combined treatment of vitamin D3 (VD3) and spironolactone (SP), a mineralocorticoid receptor antagonist, significantly improves the resolution of inflammation and accelerates wound healing after NM exposure. SP enhanced the inhibitory effect of VD3 on nuclear factor-kB activity. Combined treatment of NM-exposed mice with VD3 and SP synergistically inhibited the expression of iNOS in the skin and decreased the expression of matrix metallopeptidase-9, C-C motif chemokine ligand 2, interleukin (IL)-1α, and IL-1ß. The combined treatment decreased the number of local proinflammatory M1 macrophages resulting in an increase in the M2/M1 ratio in the wound microenvironment. Apoptosis was also decreased in the skin after combined treatment. Together, this creates a proresolution state, resulting in more rapid wound closure. Combined VD3 and SP treatment is effective in modulating the immune response and activating anti-inflammatory pathways in macrophages to facilitate tissue repair. Altogether, these data demonstrate that VD3 and SP may constitute an effective treatment regimen to improve wound healing after NM or other skin chemical injury.
Assuntos
Colecalciferol/farmacologia , Mecloretamina/toxicidade , Pele , Espironolactona/farmacologia , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Animais , Apoptose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Células RAW 264.7 , Pele/lesões , Pele/metabolismo , Pele/patologia , Ferimentos e Lesões/induzido quimicamente , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologiaRESUMO
Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions.
Assuntos
Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-1/farmacologia , Animais , Transplante de Medula Óssea , Divisão Celular/efeitos dos fármacos , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/citologia , CamundongosRESUMO
Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1-driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1-exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function.