Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(15): 8880-8896, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38967018

RESUMO

The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo , Proteína de Replicação A , Vírus 40 dos Símios , Vírus 40 dos Símios/metabolismo , Vírus 40 dos Símios/genética , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteína de Replicação A/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA Helicases/metabolismo , DNA Helicases/genética , DNA Viral/metabolismo , DNA Viral/genética , Replicação Viral , Imagem Individual de Molécula , Antígenos Transformantes de Poliomavirus/metabolismo , Antígenos Transformantes de Poliomavirus/genética , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA , Complexos Multienzimáticos
2.
J Clin Immunol ; 44(7): 151, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896336

RESUMO

A cell's ability to survive and to evade cancer is contingent on its ability to retain genomic integrity, which can be seriously compromised when nucleic acid phosphodiester bonds are disrupted. DNA Ligase 1 (LIG1) plays a key role in genome maintenance by sealing single-stranded nicks that are produced during DNA replication and repair. Autosomal recessive mutations in a limited number of individuals have been previously described for this gene. Here we report a homozygous LIG1 mutation (p.A624T), affecting a universally conserved residue, in a patient presenting with leukopenia, neutropenia, lymphopenia, pan-hypogammaglobulinemia, and diminished in vitro response to mitogen stimulation. Patient fibroblasts expressed normal levels of LIG1 protein but exhibited impaired growth, poor viability, high baseline levels of gamma-H2AX foci, and an enhanced susceptibility to DNA-damaging agents. The mutation reduced LIG1 activity by lowering its affinity for magnesium 2.5-fold. Remarkably, it also increased LIG1 fidelity > 50-fold against 3' end 8-Oxoguanine mismatches, exhibiting a marked reduction in its ability to process such nicks. This is expected to yield increased ss- and dsDNA breaks. Molecular dynamic simulations, and Residue Interaction Network studies, predicted an allosteric effect for this mutation on the protein loops associated with the LIG1 high-fidelity magnesium, as well as on DNA binding within the adenylation domain. These dual alterations of suppressed activity and enhanced fidelity, arising from a single mutation, underscore the mechanistic picture of how a LIG1 defect can lead to severe immunological disease.


Assuntos
DNA Ligase Dependente de ATP , Homozigoto , Mutação , Imunodeficiência Combinada Severa , Feminino , Humanos , Masculino , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Fibroblastos , Simulação de Dinâmica Molecular , Mutação/genética , Imunodeficiência Combinada Severa/genética , Lactente
3.
BMC Biol ; 22(1): 101, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685010

RESUMO

BACKGROUND: CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS: Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS: Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Edição de Genes , Humanos , Edição de Genes/métodos , Quebras de DNA , Reparo de DNA por Recombinação , Deleção de Sequência , DNA Polimerase teta , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética
4.
Nat Commun ; 14(1): 1464, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928189

RESUMO

Antimicrobial peptides (AMPs) are promising next-generation antibiotics that can be used to combat drug-resistant pathogens. However, the high cost involved in AMP synthesis and their short plasma half-life render their clinical translation a challenge. To address these shortcomings, we report efficient production of bioactive amidated AMPs by transient expression of glycine-extended AMPs in Nicotiana benthamiana line expressing the mammalian enzyme peptidylglycine α-amidating mono-oxygenase (PAM). Cationic AMPs accumulate to substantial levels in PAM transgenic plants compare to nontransgenic N. benthamiana. Moreover, AMPs purified from plants exhibit robust killing activity against six highly virulent and antibiotic resistant ESKAPE pathogens, prevent their biofilm formation, analogous to their synthetic counterparts and synergize with antibiotics. We also perform a base case techno-economic analysis of our platform, demonstrating the potential economic advantages and scalability for industrial use. Taken together, our experimental data and techno-economic analysis demonstrate the potential use of plant chassis for large-scale production of clinical-grade AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/biossíntese , Mamíferos , Plantas , Nicotiana/química , Nicotiana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos
5.
ACS Omega ; 6(11): 7374-7386, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778250

RESUMO

One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method for COVID-19 diagnostics. Notwithstanding the facts that one-step qRT-PCR is well suited for the diagnosis of COVID-19 and that there are many commercially available one-step qRT-PCR kits in the market, their high cost and unavailability due to airport closures and shipment restriction became a major bottleneck that had driven the desire to produce the key components of such kits locally. Here, we provide a simple, economical, and powerful one-step qRT-PCR kit based on patent-free, specifically tailored versions of Moloney murine leukemia virus reverse transcriptase and Thermus aquaticus DNA polymerase and termed R3T (Rapid Research Response Team) one-step qRT-PCR. We also demonstrate the robustness of our enzyme production strategies and provide the optimal reaction conditions for their efficient augmentation in a one-step approach. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity to that of the Invitrogen SuperScript III Platinum One-step qRT-PCR and TaqPath one-step RT-qPCR kits. Overall, our kit has shown robust performance in both laboratory settings and the Saudi Ministry of Health-approved testing facility.

6.
Plant Genome ; 13(2): e20030, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33016603

RESUMO

Cadmium (Cd) toxicity is a serious threat to future food security and health safety. To identify genetic factors contributing to Cd uptake in wheat, we conducted a genome-wide association study with genotyping from 90K SNP array. A spring wheat diversity panel was planted under normal conditions and Cd stress (50 mg Cd/kg soil). The impact of Cd stress on agronomic traits ranged from a reduction of 16% in plant height to 93% in grain iron content. Individual genotypes showed a considerable variation for Cd uptake and translocation subdividing the panel into three groups: (1) hyper-accumulators (i.e. high Leaf_Cd and low Seed_Cd ), (2) hyper-translocators (i.e. low Leaf_Cd and high Seed_Cd ), and (3) moderate lines (i.e. low Leaf_Cd and low Seed_Cd ). Two lines (SKD-1 and TD-1) maintained an optimum grain yield under Cd stress and were therefore considered as Cd resistant lines. Genome-wide association identified 179 SNP-trait associations for various traits including 16 for Cd uptake at a significance level of P < .001. However, only five SNPs were significant after applying multiple testing correction. These loci were associated with seed-cadmium, grain-iron, and grain-zinc: qSCd-1A, qSCd-1D, qZn-2B1, qZn-2B2, and qFe-6D. These five loci had not been identified in the previously reported studies for Cd uptake in wheat. These loci and the underlying genes should be further investigated using molecular biology techniques to identify Cd resistant genes in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Cádmio , Grão Comestível/genética , Fenótipo , Triticum/genética
7.
Biochemistry ; 59(39): 3757-3771, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901486

RESUMO

Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.


Assuntos
Selectina E/metabolismo , Fucosiltransferases/metabolismo , Polissacarídeos/metabolismo , Células-Tronco/metabolismo , Animais , Bombyx/genética , Linhagem Celular , Linhagem Celular Tumoral , Fucosiltransferases/genética , Expressão Gênica , Humanos , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 295(11): 3719-3733, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31949047

RESUMO

Selectins are key to mediating interactions involved in cellular adhesion and migration, underlying processes such as immune responses, metastasis, and transplantation. Selectins are composed of a lectin domain, an epidermal growth factor (EGF)-like domain, multiple short consensus repeats (SCRs), a transmembrane domain, and a cytoplasmic tail. It is well-established that the lectin and EGF domains are required to mediate interactions with ligands; however, the contributions of the other domains in mediating these interactions remain obscure. Using various E-selectin constructs produced in a newly developed silkworm-based expression system and several assays performed under both static and physiological flow conditions, including flow cytometry, glycan array analysis, surface plasmon resonance, and cell-rolling assays, we show here that a reduction in the number of SCR domains is correlated with a decline in functional E-selectin binding to hematopoietic cell E- and/or L-selectin ligand (HCELL) and P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, the binding was significantly improved through E-selectin dimerization and by a substitution (A28H) that mimics an extended conformation of the lectin and EGF domains. Analyses of the association and dissociation rates indicated that the SCR domains, conformational extension, and dimerization collectively contribute to the association rate of E-selectin-ligand binding, whereas just the lectin and EGF domains contribute to the dissociation rate. These findings provide the first evidence of the critical role of the association rate in functional E-selectin-ligand interactions, and they highlight that the SCR domains have an important role that goes beyond the structural extension of the lectin and EGF domains.


Assuntos
Selectina E/química , Selectina E/metabolismo , Animais , Bombyx , Linhagem Celular Tumoral , Selectina E/isolamento & purificação , Humanos , Proteínas Imobilizadas/metabolismo , Cinética , Ligantes , Camundongos , Polissacarídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade
9.
Indian J Pathol Microbiol ; 55(2): 250-2, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22771658

RESUMO

Nephrogenic adenoma is a rare, benign, metaplastic lesion predominantly seen in urinary bladder, which occurs even more rarely in the ureters. We report two such cases, arising in the ureter. Both patients were young adult males. Histology of both cases was similar, showing tubules lined by columnar cells with hobnailing of nuclei. Immunohistochemically, both cases resembled their counterparts in urinary bladder. These lesions are important to recognize, since they can easily be confused with several malignancies.


Assuntos
Adenoma/diagnóstico , Adenoma/patologia , Neoplasias Ureterais/diagnóstico , Neoplasias Ureterais/patologia , Adolescente , Histocitoquímica , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Masculino , Microscopia , Racemases e Epimerases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA