Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1865, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424045

RESUMO

The c-MYC oncogene is activated in over 70% of all human cancers. The intrinsic disorder of the c-MYC transcription factor facilitates molecular interactions that regulate numerous biological pathways, but severely limits efforts to target its function for cancer therapy. Here, we use a reductionist strategy to characterize the dynamic and structural heterogeneity of the c-MYC protein. Using probe-based Molecular Dynamics (MD) simulations and machine learning, we identify a conformational switch in the c-MYC amino-terminal transactivation domain (termed coreMYC) that cycles between a closed, inactive, and an open, active conformation. Using the polyphenol epigallocatechin gallate (EGCG) to modulate the conformational landscape of coreMYC, we show through biophysical and cellular assays that the induction of a closed conformation impedes its interactions with the transformation/transcription domain-associated protein (TRRAP) and the TATA-box binding protein (TBP) which are essential for the transcriptional and oncogenic activities of c-MYC. Together, these findings provide insights into structure-activity relationships of c-MYC, which open avenues towards the development of shape-shifting compounds to target c-MYC as well as other disordered transcription factors for cancer treatment.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Humanos , Ativação Transcricional , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Conformação Molecular , Ligação Proteica
2.
J Am Chem Soc ; 145(19): 10659-10668, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145883

RESUMO

Liquid-liquid phase separation (LLPS) of heterogeneous ribonucleoproteins (hnRNPs) drives the formation of membraneless organelles, but structural information about their assembled states is still lacking. Here, we address this challenge through a combination of protein engineering, native ion mobility mass spectrometry, and molecular dynamics simulations. We used an LLPS-compatible spider silk domain and pH changes to control the self-assembly of the hnRNPs FUS, TDP-43, and hCPEB3, which are implicated in neurodegeneration, cancer, and memory storage. By releasing the proteins inside the mass spectrometer from their native assemblies, we could monitor conformational changes associated with liquid-liquid phase separation. We find that FUS monomers undergo an unfolded-to-globular transition, whereas TDP-43 oligomerizes into partially disordered dimers and trimers. hCPEB3, on the other hand, remains fully disordered with a preference for fibrillar aggregation over LLPS. The divergent assembly mechanisms revealed by ion mobility mass spectrometry of soluble protein species that exist under LLPS conditions suggest structurally distinct complexes inside liquid droplets that may impact RNA processing and translation depending on biological context.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Proteínas de Ligação a DNA/química , Espectrometria de Massas
3.
Protein Sci ; 32(4): e4604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807681

RESUMO

Slow conformational changes are often directly linked to protein function. It is however less clear how such processes may perturb the overall folding stability of a protein. We previously found that the stabilizing double mutant L49I/I57V in the small protein chymotrypsin inhibitor 2 from barley led to distributed increased nanosecond and faster dynamics. Here we asked what effects the L49I and I57V substitutions, either individually or together, have on the slow conformational dynamics of CI2. We used 15 N CPMG spin relaxation dispersion experiments to measure the kinetics, thermodynamics, and structural changes associated with slow conformational change in CI2. These changes result in an excited state that is populated to 4.3% at 1°C. As the temperature is increased the population of the excited state decreases. Structural changes in the excited state are associated with residues that interact with water molecules that have well defined positions and are found at these positions in all crystal structures of CI2. The substitutions in CI2 have only little effect on the structure of the excited state whereas the stability of the excited state to some extent follows the stability of the main state. The minor state is thus most populated for the most stable CI2 variant and least populated for the least stable variant. We hypothesize that the interactions between the substituted residues and the well-ordered water molecules links subtle structural changes around the substituted residues to the region in the protein that experience slow conformational changes.


Assuntos
Peptídeos , Dobramento de Proteína , Peptídeos/química , Proteínas de Plantas/química , Termodinâmica , Água , Quimotripsina/metabolismo , Conformação Proteica
4.
Biochemistry ; 61(3): 160-170, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019273

RESUMO

The conformational heterogeneity of a folded protein can affect not only its function but also stability and folding. We recently discovered and characterized a stabilized double mutant (L49I/I57V) of the protein CI2 and showed that state-of-the-art prediction methods could not predict the increased stability relative to the wild-type protein. Here, we have examined whether changed native-state dynamics, and resulting entropy changes, can explain the stability changes in the double mutant protein, as well as the two single mutant forms. We have combined NMR relaxation measurements of the ps-ns dynamics of amide groups in the backbone and the methyl groups in the side chains with molecular dynamics simulations to quantify the native-state dynamics. The NMR experiments reveal that the mutations have different effects on the conformational flexibility of CI2: a reduction in conformational dynamics (and entropy estimated from this) of the native state of the L49I variant correlates with its decreased stability, while increased dynamics of the I57V and L49I/I57V variants correlates with their increased stability. These findings suggest that explicitly accounting for changes in native-state entropy might be needed to improve the predictions of the effect of mutations on protein stability.


Assuntos
Peptídeos/química , Peptídeos/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Amidas/química , Entropia , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Mutação , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
5.
Commun Biol ; 4(1): 980, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408246

RESUMO

Most single point mutations destabilize folded proteins. Mutations that stabilize a protein typically only have a small effect and multiple mutations are often needed to substantially increase the stability. Multiple point mutations may act synergistically on the stability, and it is often not straightforward to predict their combined effect from the individual contributions. Here, we have applied an efficient in-cell assay in E. coli to select variants of the barley chymotrypsin inhibitor 2 with increased stability. We find two variants that are more than 3.8 kJ mol-1 more stable than the wild-type. In one case, the increased stability is the effect of the single substitution D55G. The other case is a double mutant, L49I/I57V, which is 5.1 kJ mol-1 more stable than the sum of the effects of the individual mutations. In addition to demonstrating the strength of our selection system for finding stabilizing mutations, our work also demonstrate how subtle conformational effects may modulate stability.


Assuntos
Escherichia coli/genética , Biblioteca Gênica , Hordeum/genética , Peptídeos/genética , Proteínas de Plantas/genética , Mutação Puntual , Escherichia coli/metabolismo , Hordeum/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo
6.
Anal Biochem ; 605: 113863, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738214

RESUMO

The stability of a protein is a fundamental property that determines under which conditions, the protein is functional. Equilibrium unfolding with denaturants requires preparation of several samples and only provides the free energy of folding when performed at a single temperature. The typical sample requirement is around 0.5-1 mg of protein. If the stability of many proteins or protein variants needs to be determined, substantial protein production may be needed. Here we have determined the stability of acyl-coenzyme A binding protein at pH 5.3 and chymotrypsin inhibitor 2 at pH 3 and pH 6.25 by combined temperature and denaturant unfolding. We used a setup where tryptophan fluorescence is measured in quartz capillaries where only 10 µl is needed. Temperature unfolding of a series of 15 samples at increasing denaturant concentrations provided accurate and precise thermodynamic parameters. We find that the number of samples may be further reduced and less than 10 µg of protein in total are needed for reliable stability measurements. For assessment of stability of protein purified in small scale e.g. in micro plate format, our method will be highly applicable. The routine for fitting the experimental data is made available as a python notebook.


Assuntos
Proteínas de Transporte/química , Peptídeos/química , Proteínas de Plantas/química , Desnaturação Proteica , Guanidina/química , Cinética , Conformação Proteica , Estabilidade Proteica , Termodinâmica , Ureia/química
7.
J Biol Chem ; 294(22): 8745-8759, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30975904

RESUMO

Venomous marine cone snails produce peptide toxins (conotoxins) that bind ion channels and receptors with high specificity and therefore are important pharmacological tools. Conotoxins contain conserved cysteine residues that form disulfide bonds that stabilize their structures. To gain structural insight into the large, yet poorly characterized conotoxin H-superfamily, we used NMR and CD spectroscopy along with MS-based analyses to investigate H-Vc7.2 from Conus victoriae, a peptide with a VI/VII cysteine framework. This framework has CysI-CysIV/CysII-CysV/CysIII-CysVI connectivities, which have invariably been associated with the inhibitor cystine knot (ICK) fold. However, the solution structure of recombinantly expressed and purified H-Vc7.2 revealed that although it displays the expected cysteine connectivities, H-Vc7.2 adopts a different fold consisting of two stacked ß-hairpins with opposing ß-strands connected by two parallel disulfide bonds, a structure homologous to the N-terminal region of the human granulin protein. Using structural comparisons, we subsequently identified several toxins and nontoxin proteins with this "mini-granulin" fold. These findings raise fundamental questions concerning sequence-structure relationships within peptides and proteins and the key determinants that specify a given fold.


Assuntos
Conotoxinas/química , Caramujo Conus/metabolismo , Cisteína/química , Granulinas/química , Sequência de Aminoácidos , Animais , Conotoxinas/genética , Conotoxinas/metabolismo , Dissulfetos/química , Granulinas/metabolismo , Espectroscopia de Ressonância Magnética , Venenos de Moluscos/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Sci Rep ; 8(1): 8957, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895898

RESUMO

NCAM1 and NCAM2 have ectodomains consisting of 5 Ig domains followed by 2 membrane-proximal FnIII domains. In this study we investigate and compare the structures and functions of these FnIII domains. The NCAM1 and -2 FnIII2 domains both contain a Walker A motif. In NCAM1 binding of ATP to this motif interferes with NCAM1 binding to FGFR. We obtained a structural model of the NCAM2 FnIII2 domain by NMR spectroscopy, and by titration with an ATP analogue we show that the NCAM2 Walker A motif does not bind ATP. Small angle X-ray scattering (SAXS) data revealed that the NCAM2 FnIII1-2 double domain exhibits a very low degree of flexibility. Moreover, recombinant NCAM2 FnIII domains bind FGFR in vitro, and the FnIII1-2 double domain induces neurite outgrowth in a concentration-dependent manner through activation of FGFR. Several synthetic NCAM1-derived peptides induce neurite outgrowth via FGFR. Only 2 of 5 peptides derived from similar regions in NCAM2 induce neurite outgrowth, but the most potent of these peptides stimulates neurite outgrowth through FGFR-dependent activation of the Ras-MAPK pathway. These results reveal that the NCAM2 FnIII domains form a rigid structure that binds and activates FGFR in a manner related to, but different from NCAM1.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Molécula L1 de Adesão de Célula Nervosa , Neuritos/metabolismo , Peptídeos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Moléculas de Adesão de Célula Nervosa , Peptídeos/química , Peptídeos/farmacologia , Domínios Proteicos , Ratos , Ratos Wistar
9.
J Biol Chem ; 289(36): 25327-40, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25023278

RESUMO

PDZ domain proteins control multiple cellular functions by governing assembly of protein complexes. It remains unknown why individual PDZ domains can bind the extreme C terminus of very diverse binding partners and maintain selectivity. By employing NMR spectroscopy, together with molecular modeling, mutational analysis, and fluorescent polarization binding experiments, we identify here three structural mechanisms explaining why the PDZ domain of PICK1 selectively binds >30 receptors, transporters, and kinases. Class II ligands, including the dopamine transporter, adopt a canonical binding mode with promiscuity obtained via differential packing in the binding groove. Class I ligands, such as protein kinase Cα, depend on residues upstream from the canonical binding sequence that are likely to interact with flexible loop residues of the PDZ domain. Finally, we obtain evidence that the unconventional ligand ASIC1a has a dual binding mode involving a canonical insertion and a noncanonical internal insertion with the two C-terminal residues forming interactions outside the groove. Together with an evolutionary analysis, the data show how unconventional binding modes might evolve for a protein recognition domain to expand the repertoire of functionally important interactions.


Assuntos
Proteínas de Transporte/química , Simulação de Acoplamento Molecular/métodos , Proteínas Nucleares/química , Domínios PDZ , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Polarização de Fluorescência , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteína Quinase C-alfa/química , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo
10.
Biochemistry ; 53(15): 2533-40, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24673564

RESUMO

The enzyme glutaredoxin catalyzes glutathione exchange, but little is known about its interaction with protein substrates. Very different proteins are substrates in vitro, and the enzyme seems to have low requirements for specific protein interactions. Here we present a systematic investigation of the interaction between human glutaredoxin 1 and glutathionylated variants of a single model protein. Thus, single cysteine variants of acyl-coenzyme A binding protein were produced creating a set of substrates in the same protein background. The rate constants for deglutathionylation differ by more than 2 orders of magnitude between the best (k1 = 1.75 × 10(5) M(-1) s(-1)) and the worst substrate (k1 = 4 × 10(2) M(-1) s(-1)). The pKa values of the substrate cysteine residues were determined by NMR spectroscopy and found to vary from 8.2 to 9.9. Rates of glutaredoxin 1-catalyzed deglutathionylation were assessed with respect to substrate cysteine pKa values, cysteine residue accessibility, local stability, and backbone dynamics. Good substrates are characterized by a combination of high accessibility of the glutathionylated site and low pKa of the cysteine residue.


Assuntos
Cisteína/metabolismo , Glutarredoxinas/metabolismo , Biocatálise , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
11.
Angew Chem Int Ed Engl ; 53(6): 1548-51, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24449148

RESUMO

Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activation domain of the activator for thyroid hormone and retinoid receptors (ACTR) is intrinsically disordered and folds upon binding to the nuclear coactivator binding domain (NCBD) of the CREB binding protein. A number of mutants was designed that selectively perturbs the amount of secondary structure in unbound ACTR without interfering with the intermolecular interactions between ACTR and NCBD. Using NMR spectroscopy and fluorescence-monitored stopped-flow kinetic measurements we show that the secondary structure content in helix 1 of ACTR indeed influences the binding kinetics. The results thus support the notion of preformed secondary structure as an important determinant for molecular recognition in intrinsically disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Ligantes , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Cinética , Mutação , Ressonância Magnética Nuclear Biomolecular , Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Biochemistry ; 52(10): 1686-93, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23373423

RESUMO

Intrinsically disordered proteins are renowned for their structural plasticity when they undergo coupled folding and binding to partner proteins. The nuclear coactivator binding domain of CBP is a remarkable example of this adaptability as it folds into two different conformations depending on the binding partner. To understand the role of the conformational ensemble for plasticity in ligand recognition, we investigated the millisecond dynamics of this domain using relaxation dispersion NMR spectroscopy. All NMR signals originating from the domain are broadened, demonstrating that the whole domain experience conformational exchange. The dispersion data can be described by a global two-state exchange process between a ground state and an excited state populated to 8%. The three helices are still folded in the excited state but have a different packing from the ground state; the contact between helices 2 and 3 found in the ground state is broken in the excited state, and a new one is formed between helices 1 and 3. This suggests that while NCBD in the ground state has a structure similar to the complex with the ligand ACTR, the conformation of NCBD in the excited state has some similarity with that of NCBD in complex with the ligand IRF-3. The energy landscape of this domain is thus proposed to resemble the fold-switching proteins that have two coexisting native states, which may serve as a starting point for binding via conformational selection.


Assuntos
Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animais , Interações Hidrofóbicas e Hidrofílicas , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/metabolismo , Ligantes , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Termodinâmica
13.
J Biol Chem ; 287(31): 26388-99, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22700979

RESUMO

The human selenoprotein VIMP (VCP-interacting membrane protein)/SelS (selenoprotein S) localizes to the endoplasmic reticulum (ER) membrane and is involved in the process of ER-associated degradation (ERAD). To date, little is known about the presumed redox activity of VIMP, its structure and how these features might relate to the function of the protein in ERAD. Here, we use the recombinantly expressed cytosolic region of VIMP where the selenocysteine (Sec) in position 188 is replaced with a cysteine (a construct named cVIMP-Cys) to characterize redox and structural properties of the protein. We show that Cys-188 in cVIMP-Cys forms a disulfide bond with Cys-174, consistent with the presence of a Cys174-Sec188 selenosulfide bond in the native sequence. For the disulfide bond in cVIMP-Cys we determined the reduction potential to -200 mV, and showed it to be a good substrate of thioredoxin. Based on a biochemical and structural characterization of cVIMP-Cys using analytical gel filtration, CD and NMR spectroscopy in conjunction with bioinformatics, we propose a comprehensive overall structural model for the cytosolic region of VIMP. The data clearly indicate the N-terminal half to be comprised of two extended α-helices followed by a C-terminal region that is intrinsically disordered. Redox-dependent conformational changes in cVIMP-Cys were observed only in the vicinity of the two Cys residues. Overall, the redox properties observed for cVIMP-Cys are compatible with a function as a reductase, and we speculate that the plasticity of the intrinsically disordered C-terminal region allows the protein to access many different and structurally diverse substrates.


Assuntos
Proteínas de Membrana/química , Oxirredutases/química , Selenoproteínas/química , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia em Gel , Dicroísmo Circular , Cistina/química , Escherichia coli , Proteínas de Membrana/biossíntese , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , Oxirredução , Oxirredutases/biossíntese , Oxirredutases/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Selenoproteínas/biossíntese , Selenoproteínas/isolamento & purificação , Tiorredoxinas/química
14.
Structure ; 20(2): 270-82, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325776

RESUMO

The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane proximal domain of the human PRLR and find that the tryptophans of the motif adopt a T-stack conformation in the unbound state. By contrast, in the hormone bound state, a Trp/Arg-ladder is formed. The conformational change is hormone-dependent and influences the receptor-receptor dimerization site 3. In the constitutively active, breast cancer-related receptor mutant PRLR(I146L), we observed a stabilization of the dimeric state and a change in the dynamics of the motif. Here we demonstrate a structural link between the WSXWS motif, hormone binding, and receptor dimerization and propose it as a general mechanism for class 1 receptor activation.


Assuntos
Receptores de Citocinas/química , Receptores da Prolactina/química , Motivos de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Tamanho da Partícula , Prolactina/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Titulometria
15.
J Am Chem Soc ; 133(9): 3034-42, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21323311

RESUMO

Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover with a combination of NMR magnetization transfer, R(2) relaxation dispersion, and ligand titration experiments. Glutaredoxins catalyze a glutathione exchange reaction, forming a stable glutathinoylated enzyme intermediate. The equilibrium between the reduced state and the glutathionylated state was biochemically tuned to exchange on the millisecond time scale. The conformational changes of the protein backbone during catalysis were followed by (15)N nuclear spin relaxation dispersion experiments. A conformational transition that is well described by a two-state process with an exchange rate corresponding to the glutathione exchange rate was observed for 23 residues. Binding of reduced glutathione resulted in competitive inhibition of the reduced enzyme having kinetics similar to that of the reaction. This observation couples the motions observed during catalysis directly to substrate binding. Backbone motions on the time scale of catalytic turnover were not observed for the enzyme in the resting states, implying that alternative conformers do not accumulate to significant concentrations. These results infer that the turnover rate in glutaredoxin is governed by formation of a productive enzyme-substrate encounter complex, and that catalysis proceeds by an induced fit mechanism rather than by conformer selection driven by intrinsic conformational dynamics.


Assuntos
Glutarredoxinas/metabolismo , Catálise , Glutarredoxinas/química , Glutationa/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
16.
J Mol Biol ; 362(3): 502-15, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16930619

RESUMO

Beta-microseminoprotein (MSP) is a small cysteine-rich protein (molecular mass about 10 kDa) first isolated from human seminal plasma and later identified in several other organisms. The function of MSP is not known, but a recent study has shown MSP to bind CRISP-3, a protein present in neutrophilic granulocytes. The amino acid sequence is highly variable between species raising the question of the evolutionary conservation of the 3D structure. Here we present NMR solution structures of both the human and the porcine MSP. The two proteins (sequence identity 51%) have a very similar 3D structure with the secondary structure elements well conserved and with most of the amino acid substitutions causing a change of charge localized to one side of the molecule. MSP is a beta-sheet-rich protein with two distinct domains. The N-terminal domain is composed of a four-stranded beta-sheet, with the strands arranged according to the Greek key-motif, and a less structured part. The C-terminal domain contains two two-stranded beta-sheets with no resemblance to known structural motifs. The two domains, connected to each other by the peptide backbone, one disulfide bond, and interactions between the N and C termini, are oriented to give the molecule a rather extended structure. This global fold differs markedly from that of a previously published structure for porcine MSP, in which the two domains have an entirely different orientation to each other. The difference probably stems from a misinterpretation of ten specific inter-domain NOEs.


Assuntos
Proteínas Secretadas pela Próstata/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Secretadas pela Próstata/genética , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Soluções , Eletricidade Estática , Suínos
17.
J Mol Biol ; 324(2): 349-57, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12441112

RESUMO

Paramagnetic relaxation has been used to monitor the formation of structure in the folding peptide chain of guanidinium chloride-denatured acyl-coenzyme A-binding protein. The spin label (1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)methanesulfonate (MTSL) was covalently bound to a single cysteine residue introduced into five different positions in the amino acid sequence. It was shown that the formation of structure in the folding peptide chain at conditions where 95% of the sample is unfolded brings the relaxation probe close to a wide range of residues in the peptide chain, which are not affected in the native folded structure. It is suggested that the experiment is recording the formation of many discrete and transient structures in the polypeptide chain in the preface of protein folding. Analysis of secondary chemical shifts shows a high propensity for alpha-helix formation in the C-terminal part of the polypeptide chain, which forms an alpha-helix in the native structure and a high propensity for turn formation in two regions of the polypeptide that form turns in the native structure. The results contribute to the idea that native-like structural elements form transiently in the unfolded state, and that these may be of importance to the initiation of protein folding.


Assuntos
Inibidor da Ligação a Diazepam/química , Marcadores de Spin , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Guanidina/farmacologia , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA