Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712187

RESUMO

Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.

2.
Protein Sci ; 33(6): e5032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801224

RESUMO

The conjugation of proteins with polymers offers immense biotechnological potential by creating novel macromolecules. This article presents experimental findings on the structural properties of maltose-binding protein (MBP) conjugated with linear biodegradable polyphosphoester polymers with different molecular weights. We studied isotopic effects on both proteins and polymers. Circular dichroism and fluorescence spectroscopy and small-angle neutron scattering reveal that the conjugation process destabilizes the protein, affecting the secondary more than the tertiary structure, even at room temperature, and that the presence of two domains in the MBP may contribute to its observed instability. Notably, unfolding temperatures differ between native MBP and the conjugates. In particular, this study sheds light on the complex interplay of factors such as the deuteration influencing protein stability and conformational changes in the conjugation processes. The perdeuteration influences the hydrogen bond network and hydrophobic interactions in the case of the MBP protein. The perdeuteration of the protein influences the hydrogen bond network and hydrophobic interactions. This is evident in the decreased thermal stability of deuterated MBP protein, in the conjugate, especially with high-molecular-mass polymers.


Assuntos
Deutério , Proteínas Ligantes de Maltose , Estabilidade Proteica , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Deutério/química , Polímeros/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
3.
Food Chem ; 451: 139308, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688095

RESUMO

This study assessed the chemical profiles and bioactivities of the infusions, decoctions and hydroethanolic extracts of tarragon, basil and French lavender. The extracts were chemically characterised (HPLC-DAD-ESI/MS) and their bioactivities were evaluated in vitro. All extracts revealed antimicrobial, antifungal and antioxidant properties. French lavender extracts showed higher total phenolic content, regardless of the extraction method used, and antioxidant and antitumour capacities, but no anti-inflammatory action. All basil and two of the tarragon extracts revealed anti-inflammatory power. Thus, tarragon, basil and French lavender extracts may be considered for inclusion in foods, as preservatives or functional ingredients. Nonetheless, further studies must be conducted to evaluate the pharmacokinetic parameters of the bioactive compounds.


Assuntos
Antioxidantes , Artemisia , Lavandula , Ocimum basilicum , Extratos Vegetais , Polifenóis , Ocimum basilicum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Lavandula/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Artemisia/química , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão
4.
Antioxidants (Basel) ; 13(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397790

RESUMO

The increasing world population means an increased demand for sustainable processes and products related to foods, particularly those with added health benefits. Plants can be an alternative source of nutritional and biofunctional ingredients. Cytisus plants are an underexploited bioresource, currently prevalent in the Mediterranean Basin and western Asia. This manuscript addresses the processing potential of Cytisus plants for the development of added-value products, including food formulations, food packaging, cosmetics, and therapeutic applications. Most research has reported that Cytisus spp. are a promising source of inexpensive bioactive polyphenol compounds. Cytisus flowers should be considered and exploited as raw materials for the development of new food ingredients (antioxidants, preservatives, additives, etc.), nutraceuticals, or even direct therapeutic agents (anticancer, antibacterial, etc.). In order to evaluate the socioeconomic effect of these underutilized plants, more research is needed to assess their valorization for therapeutic and dietary possibilities, as well as the economic impact.

5.
Oncologist ; 29(3): e337-e344, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38071748

RESUMO

BACKGROUND: Liquid biopsy (LB) is a non-invasive tool to evaluate the heterogeneity of tumors. Since RAS mutations (RAS-mut) play a major role in resistance to antiepidermal growth factor receptor inhibitors (EGFR) monoclonal antibodies (Mabs), serial monitoring of RAS-mut with LB may be useful to guide treatment. The main aim of this study was to evaluate the prognostic value of the loss of RAS-mut (NeoRAS-wt) in LB, during the treatment of metastatic colorectal cancer (mCRC). METHODS: A retrospective study was conducted on patients with mCRC between January 2018 and December 2021. RAS-mut were examined in tissue biopsy, at mCRC diagnosis, and with LB, during treatment. RESULTS: Thirty-nine patients with RAS-mut mCRC were studied. LB was performed after a median of 3 lines (0-7) of systemic treatment including anti-vascular endothelial growth factor (anti-VEGF) Mabs. NeoRAS-wt was detected in 13 patients (33.3%); 9 (69.2%) of them received further treatment with anti-EGFR Mabs with a disease control rate of 44.4%. Median overall survival (OS), from the date of LB testing, was 20 months in the NeoRAS-wt group and 9 months in the persistent RAS-mut group (log-rank 2.985; P = .08), with a 12-month OS of 84.6% and 57.7%, respectively. NeoRAS-wt was identified as a predictor of survival (HR = 0.29; P = .007), with an 11-month improvement in median OS and a 71% decrease in risk of death, in heavily pretreated patients. CONCLUSIONS: In conclusion, monitoring clonal evolution in mCRC by LB may provide an additional treatment line for patients with NeoRAS-wt in advanced disease.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudos Retrospectivos , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Biópsia Líquida , Mutação
6.
Biochem Pharmacol ; 219: 115953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036191

RESUMO

The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP+ alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.


Assuntos
Antioxidantes , Doenças Mitocondriais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cisplatino/farmacologia , Metabolismo Energético , Espécies Reativas de Oxigênio/metabolismo , Doenças Mitocondriais/metabolismo , Pulmão/metabolismo
7.
Nutrients ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960276

RESUMO

Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.


Assuntos
Diabetes Gestacional , Obesidade Materna , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Antioxidantes/farmacologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/etiologia , Resveratrol/farmacologia , Diabetes Gestacional/prevenção & controle , Complicações na Gravidez/prevenção & controle , Dieta , Obesidade Materna/complicações , Retardo do Crescimento Fetal/prevenção & controle , Doença Crônica
8.
Plants (Basel) ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836137

RESUMO

The consumption of 'not-from-concentrate' (NFC) fruit juices can be a convenient and enjoyable way to incorporate the nutritional benefits and flavors of fruits into one's diet. This study will focus on the effect of production of juices from apple and pear fruits, by using centrifugal decanter and tangential filtration, on the profile of polyphenols as a valuable source of bioactive compounds. Likewise, by-products from the juice industry were characterized in order to understand the high-value-added potential based on their composition of polyphenols. Briefly, apple and apple juice showed great contents of chlorogenic acid (0.990 ± 0.021 mg/g of DW), the dihydrochalcone phloridzin (1.041 ± 0.062 mg/g of DW), procyanidins (0.733 ± 0.121 mg/g of DW) and quercetin derivatives (1.501 ± 0.192 mg/g of DW). Likewise, the most abundant compounds in pear and pear juices were chlorogenic acid (0.917 ± 0.021 mg/g of DW), caffeoylquinic acid (0.180 ± 0.029 mg/g of DW), procyanidins (0.255 ± 0.016 mg/g of DW) and quercetin derivatives (0.181 ± 0.004 mg/g of DW). Both temperature and tangential speed affect the amount of phenolic compounds in fruit juices, highlighting the need to control the technological process to obtain a more nutritious/healthier beverage. Overall, NFC juices arise as a better option when compared with concentrated juices. Furthermore, the higher yield of phenolic compounds found in fruit pomace clearly open new ways for upcycling this fruit by-product as a high-value-added ingredient.

9.
Commun Biol ; 6(1): 686, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400623

RESUMO

Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.


Assuntos
Leiomioma , Miométrio , Feminino , Humanos , Miométrio/metabolismo , Cisteína/metabolismo , Células-Tronco/metabolismo , Leiomioma/genética , Leiomioma/metabolismo
11.
Reprod Biol Endocrinol ; 21(1): 43, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170094

RESUMO

Endometrial epithelia are known to harbor cancer driver mutations in the absence of any pathologies, including mutations in PIK3CA. Insulin plays an important role in regulating uterine metabolism during pregnancy, and hyperinsulinemia is associated with conditions impacting fertility. Hyperinsulinemia also promotes cancer, but the direct action of insulin on mutated endometrial epithelial cells is unknown. Here, we treated 12Z endometriotic epithelial cells carrying the PIK3CAH1047R oncogene with insulin and examined transcriptomes by RNA-seq. While cells naively responded to insulin, the magnitude of differential gene expression (DGE) was nine times greater in PIK3CAH1047R cells, representing a synergistic effect between insulin signaling and PIK3CAH1047R expression. Interferon signaling and the unfolded protein response (UPR) were enriched pathways among affected genes. Insulin treatment in wild-type cells activated normal endoplasmic reticulum stress (ERS) response programs, while PIK3CAH1047R cells activated programs necessary to avoid ERS-induced apoptosis. PIK3CAH1047R expression alone resulted in overexpression (OE) of Viperin (RSAD2), which is involved in viral response and upregulated in the endometrium during early pregnancy. The transcriptional changes induced by insulin in PIK3CAH1047R cells were rescued by knockdown of Viperin, while Viperin OE alone was insufficient to induce a DGE response to insulin, suggesting that Viperin is necessary but not sufficient for the synergistic effect of PIK3CAH1047R and insulin treatment. We identified interferon signaling, viral response, and protein targeting pathways that are induced by insulin but dependent on Viperin in PIK3CAH1047R mutant cells. These results suggest that response to insulin signaling is altered in mutated endometriotic epithelial cells.


Assuntos
Hiperinsulinismo , Neoplasias , Feminino , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Insulina/farmacologia , Insulina/genética , Interferons/genética , Mutação , Endométrio/metabolismo
12.
Biology (Basel) ; 12(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37106795

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.

13.
Food Res Int ; 165: 112515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869512

RESUMO

Brewer's spent grain (BSG) is a by-product of the beer industry and a potential source of bioactive compounds. In this study, two methods of extracting bioactive compounds from brewer's spent grain were used - solid-to-liquid conventional extraction (SLE) and solid-to-liquid ohmic heating extraction (OHE) coupled with two ratio combinations of solvents: 60 % and 80 % ethanol:water (v/v). The bioactive potential of the BSG extracts was assessed during the gastrointestinal tract digestion (GID) and the differences in their antioxidant activity, total phenolic content and characterization of the polyphenol profile was measured. The SLE extraction using 60 % ethanol:water (v/v) was the extraction method with higher antioxidant activity (33.88 mg ascorbic acid/g BSG - initial; 16.61 mg ascorbic acid/g BSG - mouth; 15.58 mg ascorbic acid/g BSG - stomach; 17.26 mg ascorbic acid/g BSG - duodenum) and higher content in total phenolics (13.26 mg gallic acid/g BSG - initial; 4.80 mg gallic acid/g BSG - mouth; 4.88 mg gallic acid/g BSG - stomach; 5.00 mg gallic acid/g BSG - duodenum). However, the OHE extraction using 80 % ethanol:water (v/v), had a higher bioaccessibility index (99.77 % for ferulic acid, 72.68 % for 4-hydroxybenzoic acid, 65.37 % for vanillin, 28.99 % for p-coumaric, 22.54 % for catechin) values of polyphenols. All the extracts enhanced (except for SLE for 60 % ethanol:water (v/v) at 2 and 1.5 %, and for 80 % ethanol:water (v/v) at 2 % with Bifidobacterium animalis spp. lactis BB12, where no growth was observed) the growth of the probiotic microorganisms tested (Bifidobacterium animalis B0 - O.D.'s between 0.8240 and 1.7727; Bifidobacterium animalis spp. lactis BB12 - O.D.'s between 0.7219 and 0.8798; Lacticaseibacillus casei 01 - O.D.'s between 0.9121 and 1.0249; and Lactobacillus acidophilus LA-5 - O.D.'s between 0.8595 and 0.9677), demonstrating a potential prebiotic activity of BSG extracts.


Assuntos
Bifidobacterium animalis , Prebióticos , Antioxidantes , Ácido Ascórbico , Digestão , Grão Comestível , Etanol
14.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993447

RESUMO

Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.

15.
J Surg Case Rep ; 2023(3): rjad151, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36998260

RESUMO

Extrapleural solitary fibrous tumors are a rare type of spindle cell neoplasm, which can occur in many locations with different histologic and immunohistochemical findings, making the diagnosis challenging. They are usually indolent and their treatment is based on complete surgical resection. There are still some issues to be clarified regarding systemic therapy (specifically when aggressive behavior exists) and long-term follow-up. We present a series of clinical cases in the same Department and review this thematic area.

16.
Foods ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900464

RESUMO

Plants are rich in bioactive phytochemicals that often display medicinal properties. These can play an important role in the production of health-promoting food additives and the replacement of artificial ones. In this sense, this study aimed to characterise the polyphenolic profile and bioactive properties of the decoctions, infusions and hydroethanolic extracts of three plants: lemon balm (Melissa officinalis L.), sage (Salvia officinalis L.) and spearmint (Mentha spicata L.). Total phenolic content ranged from 38.79 mg/g extract to 84.51 mg/g extract, depending on the extract. The main phenolic compound detected in all cases was rosmarinic acid. The results highlighted that some of these extracts may have the ability to prevent food spoilage (due to antibacterial and antifungal effects) and promote health benefits (due to anti-inflammatory and antioxidant capacities) while not displaying toxicity against healthy cells. Furthermore, although no anti-inflammatory capacity was observed from sage extracts, these stood out for often displaying the best outcomes in terms of other bioactivities. Overall, the results of our research provide insight into the potential of plant extracts as a source of active phytochemicals and as natural food additives. They also support the current trends in the food industry of replacing synthetic additives and developing foods with added beneficial health effects beyond basic nutrition.

17.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829938

RESUMO

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and blindness in elderly people worldwide. The damage to the retinal pigment epithelium (RPE) triggered by oxidative stress plays a central role in the onset and progression of AMD and results from the excessive accumulation of reactive oxygen species (ROS) produced mainly by mitochondria. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecular chaperone that contributes to the maintenance of mitochondrial integrity by decreasing the production and accumulation of ROS. The present study aimed to evaluate the presence and the role of TRAP1 in the RPE. Here, we report that TRAP1 is expressed in human adult retinal pigment epithelial cells and is located mainly in the mitochondria. Exposure of RPE cells to hydrogen peroxide decreases the levels of TRAP1. Furthermore, TRAP1 silencing increases intracellular ROS production and decreases mitochondrial respiratory capacity without affecting cell proliferation. Together, these findings offer novel insights into TRAP1 functions in RPE cells, opening possibilities to develop new treatment options for AMD.

19.
Port J Card Thorac Vasc Surg ; 29(4): 27-30, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36640293

RESUMO

INTRODUCTION: Carotid body tumours (CBT) are rare paragangliomas for which surgical resection is still the recommended treatment. Frequently they are a benign disorder, discovered as asymptomatic neck masses located at the carotid bifurcation. Preoperative embolization has been used to decrease tumor volume, intraoperative blood loss and nerve injuries.There is however still much controversy and some studies argue that this strategy could increase risks without benefit. This study aimed to investigate the impact of embolization on CBT resection outcomes.   Methods: We analyzed all electronic clinical records on consecutive patients treated in the last 10 years (January 2008 - January 2018) in our vascular surgery department. Patients were divided into 2 groups according to treatment: preoperative embolization and subsequent resection (PE) and resection alone (RA). The following variables were reviewed and compared between groups: age, gender, tumor size, surgery duration, days of hospitalization, complications and transfusion needs.   Results: Sixteen tumours were treated. Of these, 6 underwent PE and 10 underwent RA. Median follow-up was 54 months (IQR 78). All tumours were benign and no disease recurrence was detected. When compared, PE and RA groups had no differences in Shamblin classification (p=0.068), although tumor's median size was significantly bigger in CBT-PE (49mm v. 35,5mm, p=0,016).The days of hospitalization were significantly higher in the PE group (median 7 vs 3 p=0.012).  Concerning surgery time (201min v. 141min, p=0.093), cranial nerve injury (66.7% v. 20%, p=0.092) and need for intraoperative transfusion  (16,7% v. 10%, p=0.625), no differences were found.   Conclusions: The role of preoperative embolization in CBT has been questioned. In this study we found no benefits supporting embolization prior to surgery.


Assuntos
Tumor do Corpo Carotídeo , Embolização Terapêutica , Humanos , Tumor do Corpo Carotídeo/diagnóstico por imagem , Resultado do Tratamento , Recidiva Local de Neoplasia/etiologia , Embolização Terapêutica/efeitos adversos , Procedimentos Cirúrgicos Vasculares/efeitos adversos
20.
J Med Chem ; 66(3): 1835-1851, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36716281

RESUMO

Although the lipophilic triphenylphosphonium (TPP+) cation is widely used to target antioxidants to mitochondria, TPP+-based derivatives have shown cytotoxicity in several biological in vitro models. We confirmed that Mito.TPP is cytotoxic to both human neuronal (SH-SY5Y) and hepatic (HepG2) cells, decreasing intracellular adenosine triphosphate (ATP) levels, leading to mitochondrial membrane depolarization and reduced mitochondrial mass after 24 h. We surpassed this concern using nitrogen-derived cationic carriers (Mito.PICO, Mito.ISOQ, and Mito.IMIDZ). As opposed to Mito.TPP, these novel compounds were not cytotoxic to SH-SY5Y and HepG2 cells up to 50 µM and after 24 h of incubation. All of the cationic derivatives accumulated inside the mitochondrial matrix and acted as neuroprotective agents against iron(III), hydrogen peroxide, and tert-butyl hydroperoxide insults. The overall data showed that nitrogen-based cationic carriers can modulate the biological performance of mitochondria-directed antioxidants and are an alternative to the TPP cation.


Assuntos
Antineoplásicos , Neuroblastoma , Humanos , Antioxidantes/farmacologia , Cátions/farmacologia , Compostos Férricos , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA