Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 29(7): 1849-1858, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654216

RESUMO

Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.


Assuntos
Amidinotransferases/genética , Síndrome de Fanconi/genética , Falência Renal Crônica/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Idoso , Amidinotransferases/metabolismo , Animais , Simulação por Computador , Síndrome de Fanconi/complicações , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patologia , Feminino , Heterozigoto , Humanos , Lactente , Inflamassomos/metabolismo , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Knockout , Conformação Molecular , Mutação , Mutação de Sentido Incorreto , Linhagem , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Adulto Jovem
2.
J Am Soc Nephrol ; 28(8): 2529-2539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28373276

RESUMO

Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene (PMM2), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic ß cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2 We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy.


Assuntos
Hiperinsulinismo Congênito/complicações , Hiperinsulinismo Congênito/genética , Mutação , Fosfotransferases (Fosfomutases)/genética , Doenças Renais Policísticas/complicações , Doenças Renais Policísticas/genética , Regiões Promotoras Genéticas/genética , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
3.
Rheumatology (Oxford) ; 56(2): 209-213, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27150194

RESUMO

OBJECTIVE: This study was undertaken to characterize the phenotype and response to treatment in patients with autosomal dominant FMF caused by MEFV p.M694del mutation and to use haplotype reconstruction to investigate the possibility of common ancestry. METHODS: MEFV gene was analysed in 3500 subjects with suspected FMF referred to a single UK centre between 2002 and 2014. Patients with p.M694del underwent additional screening of the SAA1 gene as well as haplotype reconstruction of the MEFV locus. RESULTS: The p.M694del variant was identified in 21 patients, sharing an identical disease haplotype that appears to have arisen about 550 years ago. The SAA1.1 allele was found in four patients, including two with AA amyloidosis. The clinical features comprised typical FMF symptoms with median age at onset of 18 years; three patients presented with AA amyloidosis, of whom two had had symptoms of FMF in retrospect. Fifteen patients had received colchicine treatment, all with excellent responses. CONCLUSION: The p.M694del variant is associated with autosomal dominantly inherited FMF in Northern European Caucasians. Symptoms may develop later in life than in classical recessive FMF but are otherwise similar, as is the response to colchicine treatment. The 14% incidence of AA amyloidosis may reflect delay in diagnosis associated with extreme rarity of FMF in this population. The common haplotype suggests a single founder living in about 1460.


Assuntos
Febre Familiar do Mediterrâneo/genética , Pirina/genética , População Branca/genética , Adolescente , Adulto , Idoso , Amiloidose/genética , Criança , Colchicina/uso terapêutico , Febre Familiar do Mediterrâneo/complicações , Febre Familiar do Mediterrâneo/tratamento farmacológico , Feminino , Haplótipos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Moduladores de Tubulina/uso terapêutico , Reino Unido , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA