Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Membranes (Basel) ; 13(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37887994

RESUMO

The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics, contributes to cancer drug resistance and the development of gout. In this work, we have analyzed the effects of selected variants, residing in a structurally unresolved cytoplasmic region (a.a. 354-367) of ABCG2 on the function and trafficking of this protein. A cluster of four lysines (K357-360) and the phosphorylation of a threonine (T362) residue in this region have been previously suggested to significantly affect the cellular fate of ABCG2. Here, we report that the naturally occurring K360del variant in human cells increased ABCG2 plasma membrane expression and accelerated cellular trafficking. The variable alanine replacements of the neighboring lysines had no significant effect on transport function, and the apical localization of ABCG2 in polarized cells has not been altered by any of these mutations. Moreover, in contrast to previous reports, we found that the phosphorylation-incompetent T362A, or the phosphorylation-mimicking T362E variants in this loop had no measurable effects on the function or expression of ABCG2. Molecular dynamics simulations indicated an increased mobility of the mutant variants with no major effects on the core structure of the protein. These results may help to decipher the potential role of this unstructured region within this transporter.

2.
Histochem Cell Biol ; 158(3): 261-277, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648291

RESUMO

Overexpression of ABC transporters, such as ABCB1 and ABCG2, plays an important role in mediating multidrug resistance (MDR) in cancer. This feature is also attributed to a subpopulation of cancer stem cells (CSCs), having enhanced tumourigenic potential. ABCG2 is specifically associated with the CSC phenotype, making it a valuable target for eliminating aggressive and resistant cells. Several natural and synthetic ionophores have been discovered as CSC-selective drugs that may also have MDR-reversing ability, whereas their interaction with ABCG2 has not yet been explored. We previously reported the biological activities, including ABCB1 inhibition, of a group of adamantane-substituted diaza-18-crown-6 (DAC) compounds that possess ionophore capabilities. In this study, we investigated the mechanism of ABCG2-inhibitory activity of DAC compounds and the natural ionophores salinomycin, monensin and nigericin. We used a series of functional assays, including real-time microscopic analysis of ABCG2-mediated fluorescent substrate transport in cells, and docking studies to provide comparative aspects for the transporter-compound interactions and their role in restoring chemosensitivity. We found that natural ionophores did not inhibit ABCG2, suggesting that their CSC selectivity is likely mediated by other mechanisms. In contrast, DACs with amide linkage in the side arms demonstrated noteworthy ABCG2-inhibitory activity, with DAC-3Amide proving to be the most potent. This compound induced conformational changes of the transporter and likely binds to both Cavity 1 and the NBD-TMD interface. DAC-3Amide reversed ABCG2-mediated MDR in model cells, without affecting ABCG2 expression or localization. These results pave the way for the development of new crown ether compounds with improved ABCG2-inhibitory properties.


Assuntos
Antineoplásicos , Éteres de Coroa , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Éteres de Coroa/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ionóforos/farmacologia
3.
Sci Rep ; 11(1): 17810, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497279

RESUMO

Transporters in the human liver play a major role in the clearance of endo- and xenobiotics. Apical (canalicular) transporters extrude compounds to the bile, while basolateral hepatocyte transporters promote the uptake of, or expel, various compounds from/into the venous blood stream. In the present work we have examined the in vitro interactions of some key repurposed drugs advocated to treat COVID-19 (lopinavir, ritonavir, ivermectin, remdesivir and favipiravir), with the key drug transporters of hepatocytes. These transporters included ABCB11/BSEP, ABCC2/MRP2, and SLC47A1/MATE1 in the canalicular membrane, as well as ABCC3/MRP3, ABCC4/MRP4, SLC22A1/OCT1, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3, and SLC10A1/NTCP, residing in the basolateral membrane. Lopinavir and ritonavir in low micromolar concentrations inhibited BSEP and MATE1 exporters, as well as OATP1B1/1B3 uptake transporters. Ritonavir had a similar inhibitory pattern, also inhibiting OCT1. Remdesivir strongly inhibited MRP4, OATP1B1/1B3, MATE1 and OCT1. Favipiravir had no significant effect on any of these transporters. Since both general drug metabolism and drug-induced liver toxicity are strongly dependent on the functioning of these transporters, the various interactions reported here may have important clinical relevance in the drug treatment of this viral disease and the existing co-morbidities.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antivirais/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Fígado/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Comorbidade , Reposicionamento de Medicamentos , Humanos , Fígado/metabolismo , Fígado/patologia , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Lopinavir/química , Lopinavir/metabolismo , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Ritonavir/química , Ritonavir/metabolismo , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/isolamento & purificação , Especificidade por Substrato , Tratamento Farmacológico da COVID-19
4.
Pharmaceutics ; 13(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435273

RESUMO

During the COVID-19 pandemic, several repurposed drugs have been proposed to alleviate the major health effects of the disease. These drugs are often applied with analgesics or non-steroid anti-inflammatory compounds, and co-morbid patients may also be treated with anticancer, cholesterol-lowering, or antidiabetic agents. Since drug ADME-tox properties may be significantly affected by multispecific transporters, in this study, we examined the interactions of the repurposed drugs with the key human multidrug transporters present in the major tissue barriers and strongly affecting the pharmacokinetics. Our in vitro studies, using a variety of model systems, explored the interactions of the antimalarial agents chloroquine and hydroxychloroquine; the antihelmintic ivermectin; and the proposed antiviral compounds ritonavir, lopinavir, favipiravir, and remdesivir with the ABCB1/Pgp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as the organic anion-transporting polypeptide (OATP)2B1 and OATP1A2 uptake transporters. The results presented here show numerous pharmacologically relevant transporter interactions and may provide a warning on the potential toxicities of these repurposed drugs, especially in drug combinations at the clinic.

5.
Cell Mol Life Sci ; 78(5): 2329-2339, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32979053

RESUMO

Atomic-level structural insight on the human ABCG2 membrane protein, a pharmacologically important transporter, has been recently revealed by several key papers. In spite of the wealth of structural data, the pathway of transmembrane movement for the large variety of structurally different ABCG2 substrates and the physiological lipid regulation of the transporter has not been elucidated. The complex molecular dynamics simulations presented here may provide a breakthrough in understanding the steps of the substrate transport process and its regulation by cholesterol. Our analysis revealed drug binding cavities other than the central binding site and delineated a putative dynamic transport pathway for substrates with variable structures. We found that membrane cholesterol accelerated drug transport by promoting the closure of cytoplasmic protein regions. Since ABCG2 is present in all major biological barriers and drug-metabolizing organs, influences the pharmacokinetics of numerous clinically applied drugs, and plays a key role in uric acid extrusion, this information may significantly promote a reliable prediction of clinically important substrate characteristics and drug-drug interactions.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Colesterol/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação/genética , Transporte Biológico , Colesterol/metabolismo , Humanos , Irinotecano/química , Irinotecano/metabolismo , Lipídeos de Membrana/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos
6.
Nutrients ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751996

RESUMO

Quercetin is a flavonoid, its glycosides and aglycone are found in significant amounts in several plants and dietary supplements. Because of the high presystemic biotransformation of quercetin, mainly its conjugates appear in circulation. As has been reported in previous studies, quercetin can interact with several proteins of pharmacokinetic importance. However, the interactions of its metabolites with biotransformation enzymes and drug transporters have barely been examined. In this study, the inhibitory effects of quercetin and its most relevant methyl, sulfate, and glucuronide metabolites were tested on cytochrome P450 (CYP) (2C19, 3A4, and 2D6) enzymes as well as on organic anion-transporting polypeptides (OATPs) (OATP1A2, OATP1B1, OATP1B3, and OATP2B1) and ATP (adenosine triphosphate) Binding Cassette (ABC) (BCRP and MRP2) transporters. Quercetin and its metabolites (quercetin-3'-sulfate, quercetin-3-glucuronide, isorhamnetin, and isorhamnetin-3-glucuronide) showed weak inhibitory effects on CYP2C19 and 3A4, while they did not affect CYP2D6 activity. Some of the flavonoids caused weak inhibition of OATP1A2 and MRP2. However, most of the compounds tested proved to be strong inhibitors of OATP1B1, OATP1B3, OATP2B1, and BCRP. Our data demonstrate that not only quercetin but some of its conjugates, can also interact with CYP enzymes and drug transporters. Therefore, high intake of quercetin may interfere with the pharmacokinetics of drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Quercetina/farmacologia , Linhagem Celular , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Quercetina/análogos & derivados
7.
Drug Metab Dispos ; 48(10): 1064-1073, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32661014

RESUMO

Chrysin is an abundant flavonoid in nature, and it is also contained by several dietary supplements. Chrysin is highly biotransformed in the body, during which conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide are formed. These conjugates appear at considerably higher concentrations in the circulation than the parent compound. Based on previous studies, chrysin can interact with biotransformation enzymes and transporters; however, the interactions of its metabolites have been barely examined. In this in vitro study, the effects of chrysin, chrysin-7-sulfate, and chrysin-7-glucuronide on cytochrome P450 enzymes (2C9, 2C19, 3A4, and 2D6) as well as on organic anion-transporting polypeptides (OATPs; 1A2, 1B1, 1B3, and 2B1) and ATP binding cassette [P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance protein (BCRP)] transporters were investigated. Our observations revealed that chrysin conjugates are strong inhibitors of certain biotransformation enzymes (e.g., CYP2C9) and transporters (e.g., OATP1B1, OATP1B3, OATP2B1, and BCRP) examined. Therefore, the simultaneous administration of chrysin-containing dietary supplements with medications needs to be carefully considered due to the possible development of pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Chrysin-7-sulfate and chrysin-7-glucuronide are the major metabolites of flavonoid chrysin. In this study, we examined the effects of chrysin and its conjugates on cytochrome P450 enzymes and on organic anion-transporting polypeptides and ATP binding cassette transporters (P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2). Our results demonstrate that chrysin and/or its conjugates can significantly inhibit some of these proteins. Since chrysin is also contained by dietary supplements, high intake of chrysin may interrupt the transport and/or the biotransformation of drugs.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacocinética , Suplementos Nutricionais , Flavonoides/farmacocinética , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
8.
Eur J Pharm Sci ; 151: 105395, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473861

RESUMO

Detoxification in hepatocytes is a strictly controlled process, in which the governed action of membrane transporters involved in the uptake and efflux of potentially dangerous molecules has a crucial role. Major transporters of hepatic clearance belong to the ABC (ATP Binding Cassette) and Solute Carrier (SLC) protein families. Organic anion-transporting polypeptide OATP1B1 (encoded by the SLCO1B1 gene) is exclusively expressed in the sinusoidal membrane of hepatocytes, where it mediates the cellular uptake of bile acids, bilirubin, and also that of various drugs. The removal of toxic molecules from hepatocytes to the bile is accomplished by several ABC transporters, including P-glycoprotein (ABCB1), MRP2 (ABCC2) and BCRP (ABCG2). Owing to their pharmacological relevance, monitoring drug interaction with OATP1B1/3 and ABC proteins is recommended. Our aim was to assess the interaction of recently identified fluorescent OATP substrates (various dyes used in cell viability assays, pyranine, Cascade Blue hydrazide (CB) and sulforhodamine 101 (SR101)) (Bakos et al., 2019; Patik et al., 2018) with MRP2 and ABCG2 in order to find fluorescent probes for the simultaneous characterization of both uptake and efflux processes. Transport by MRP2 and ABCG2 was investigated in inside-out membrane vesicles (IOVs) allowing a fast screen of the transport of membrane impermeable substrates by efflux transporters. Next, transcellular transport of shared OATP and ABC transporter substrate dyes was evaluated in MDCKII cells co-expressing OATP1B1 and MRP2 or ABCG2. Our results indicate that pyranine is a general substrate of OATP1B1, OATP1B3 and OATP2B1, and we find that the dye Live/Dead Violet and CB are good tools to investigate ABCG2 function in IOVs. Besides their suitability for MRP2 functional tests in the IOV setup, pyranine, CB and SR101 are the first dual probes that can be used to simultaneously measure OATP1B1 and MRP2 function in polarized cells by a fluorescent method.


Assuntos
Corantes Fluorescentes , Transportadores de Ânions Orgânicos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Interações Medicamentosas , Hepatócitos , Proteínas de Neoplasias , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
9.
Cell Mol Life Sci ; 77(2): 365-378, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31254042

RESUMO

The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics; thus the relatively frequent polymorphic and mutant ABCG2 variants in the population may significantly alter disease conditions and pharmacological effects. Low-level or non-functional ABCG2 expression may increase individual drug toxicity, reduce cancer drug resistance, and result in hyperuricemia and gout. In the present work we have studied the cellular expression, trafficking, and function of nine naturally occurring polymorphic and mutant variants of ABCG2. A comprehensive analysis of the membrane localization, transport, and ATPase activity, as well as retention and degradation in intracellular compartments was performed. Among the examined variants, R147W and R383C showed expression and/or protein folding defects, indicating that they could indeed contribute to ABCG2 functional deficiency. These studies and the applied methods should significantly promote the exploration of the medical effects of these personal variants, promote potential therapies, and help to elucidate the specific role of the affected regions in the folding and function of the ABCG2 protein.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética/genética , Proteínas de Neoplasias/genética , Adenosina Trifosfatases/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Transporte Proteico/genética
10.
In Vivo ; 32(4): 737-743, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29936453

RESUMO

BACKGROUND/AIM: N. sativa essential oil (EO) and its compounds (thymoquinone, carvacrol and p-cymene) have a broad antimicrobial spectrum. The aim of this study was to investigate the antimicrobial and resistance modifying activity of N. sativa EO, thymoquinone, carvacrol and p-cymene against Listeria monocytogenes. MATERIALS AND METHODS: N. sativa EO, thymoquinone, carvacrol and p-cymene was assessed for its antimicrobial activity, modulation of antimicrobial resistance, inhibition of antimicrobial efflux and membrane integrity by broth microdilution, ethidium bromide accumulation and LIVE/DEAD BacLight™ assays. RESULTS: L. monocytogenes showed substantial susceptibility toward N. sativa EO, thymoquinone, and carvacrol. A significant reduction in MIC's of EtBr and ciprofloxacin was noticed when tested in combination with N. sativa EO, thymoquinone, carvacrol and reserpine. In the presence of each compound the membrane integrity was disintegrated, and the EtBr accumulation increased which was comparable to positive control reserpine. CONCLUSION: N. sativa EO might have a potential for controlling the antibiotic resistance in Listeria.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Nigella sativa/química , Óleos de Plantas/farmacologia , Antibacterianos/farmacologia , Benzoquinonas/química , Listeria monocytogenes/patogenicidade , Óleos Voláteis/química , Óleos de Plantas/química
11.
PLoS One ; 13(1): e0190629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342177

RESUMO

ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos
12.
Sci Rep ; 7: 41376, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145501

RESUMO

Retinoids - derivatives of vitamin A - are important cell permeant signaling molecules that regulate gene expression through activation of nuclear receptors. P-glycoprotein (Pgp) and ABCG2 are plasma membrane efflux transporters affecting the tissue distribution of numerous structurally unrelated lipophilic compounds. In the present work we aimed to study the interaction of the above ABC transporters with retinoid derivatives. We have found that 13-cis-retinoic acid, retinol and retinyl-acetate inhibited the Pgp and ABCG2 mediated substrate transport as well as the substrate stimulated ATPase activity of these transporters. Interestingly, 9-cis-retinoic acid and ATRA (all-trans retinoic acid), both are stereoisomers of 13-cis-retinoic acid, did not have any effect on the transporters' activity. Our fluorescence anisotropy measurements revealed that 13-cis-retinoic acid, retinol and retinyl-acetate selectively increase the viscosity and packing density of the membrane. Thus, the mixed-type inhibition of both transporters by retinol and ABCG2 by 13-cis-retinoic acid may be the collective result of direct interactions of these retinoids with the substrate binding site(s) and of indirect interactions mediated by their membrane rigidifying effects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Retinoides/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cães , Polarização de Fluorescência , Humanos , Cinética , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Especificidade por Substrato
13.
Cytometry A ; 89(9): 826-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27602881

RESUMO

ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Análise de Célula Única/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Adenosina Trifosfatases/genética , Benzimidazóis/química , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Corantes Fluorescentes/química , Regulação Neoplásica da Expressão Gênica , Humanos , Especificidade por Substrato
14.
Adv Cancer Res ; 125: 97-137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25640268

RESUMO

This chapter deals with the interactions of two medically important multidrug ABC transporters (MDR-ABC), ABCB1 and ABCG2, with lipid molecules. Both ABCB1 and ABCG2 are capable of transporting a wide range of hydrophobic drugs and xenobiotics and are involved in cancer chemotherapy resistance. Therefore, the exploration of their mechanism of action has major therapeutic consequences. As discussed here in detail, both ABCB1 and ABCG2 are significantly affected by various lipid compounds especially those residing in their close proximity in the plasma membrane. ABCB1 is capable of transporting lipids and lipid derivatives, and thus may alter the general membrane composition by "flopping" membrane lipid constituents, while there is no such information regarding ABCG2. Still, both ABCB1 and ABCG2 show complex interactions with a variety of lipid molecules, and the transporters are significantly modulated by cholesterol and cholesterol derivatives at the posttranslational level. In this chapter, we explore the molecular details of the direct transporter-lipid interactions, the potential role of lipid-sensor domains within the proteins, as well as the application of experimental site-directed mutagenesis, detailed structural studies, and in silico modeling for examining these interactions. We also discuss the regulation of ABCB1 and ABCG2 expression at the transcriptional level, occurring through nuclear receptors involved in lipid sensing. The better understanding of lipid interactions with these medically important MDR-ABC transporters may significantly improve further drug development and clinical treatment options.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Lipídeos de Membrana/metabolismo , Proteínas de Neoplasias/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico/genética , Membrana Celular/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Metabolismo dos Lipídeos/fisiologia , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica/genética
15.
Drug Metab Dispos ; 42(4): 575-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384916

RESUMO

ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane cholesterol content for maximal activity, and by examining purified ABCG2 reconstituted in proteoliposomes we have recently shown that cholesterol is an essential activator, while bile acids significantly modify the activity of this protein. In the present work, by using isolated insect cell membrane preparations expressing human ABCG2 and its mutant variants, we have analyzed whether certain regions in this protein are involved in sterol recognition. We found that replacing ABCG2-R482 with large amino acids does not affect cholesterol dependence, but changes to small amino acids cause altered cholesterol sensitivity. When leucines in the potential steroid-binding element (SBE, aa 555-558) of ABCG2 were replaced by alanines, cholesterol dependence of ABCG2 activity was strongly reduced, although the L558A mutant variant when purified and reconstituted still required cholesterol for full activity. Regarding the effect of bile acids in isolated membranes, we found that these compounds decreased ABCG2-ATPase in the absence of drug substrates, which did not significantly affect substrate-stimulated ATPase activity. These ABCG2 mutant variants also altered bile acid sensitivity, although cholic acid and glycocholate were not transported by the protein. We suggest that the aforementioned two regions in ABCG2 are important for sterol sensing and may represent potential targets for pharmacologic modulation of ABCG2 function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Neoplasias/metabolismo , Mutação Puntual , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Canalículos Biliares/metabolismo , Sítios de Ligação , Transporte Biológico , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Células Sf9 , Spodoptera , Especificidade por Substrato , Transfecção , Xenobióticos/metabolismo
16.
Biochem Biophys Res Commun ; 437(1): 140-5, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23800412

RESUMO

ABCG2 is an important multidrug transporter involved also in urate transport, thus its mutations can lead to the development of gout and may also alter general drug absorption, distribution and excretion. The frequent ABCG2 polymorphism, Q141K, is associated with an elevated risk of gout and has been controversially reported to reduce the plasma membrane expression and/or the transport function of the protein. In the present work we examined the stability and cellular processing of the Q141K ABCG2 variant, as well as that of the ΔF142 ABCG2, corresponding to the ΔF508 mutation in the CFTR (ABCC7) protein, causing cystic fibrosis. The processing and localization of full length ABCG2 variants were investigated in mammalian cells, followed by Western blotting and confocal microscopy, respectively. Folding and stability were examined by limited proteolysis of Sf9 insect cell membranes expressing these ABCG2 constructs. Stability of isolated nucleotide binding domains, expressed in and purified from bacteria, was studied by CD spectroscopy. We find that the Q141K variant has a mild processing defect which can be rescued by low temperature, a slightly reduced activity, and a mild folding defect, especially affecting the NBD. In contrast, the ΔF142 mutant has major processing and folding defects, and no ATPase function. We suggest that although these mutations are both localized within the NBD, based on molecular modeling their contribution to the ABCG2 structure and function is different, thus rescue strategies may be devised accordingly.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Gota/genética , Mutação/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membrana Celular/metabolismo , Dicroísmo Circular , Citometria de Fluxo , Predisposição Genética para Doença , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Fenilbutiratos/farmacologia , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteólise/efeitos dos fármacos , Temperatura
17.
Biochem J ; 450(2): 387-95, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23205634

RESUMO

The human ABCG2 multidrug transporter actively extrudes a wide range of hydrophobic drugs and xenobiotics recognized by the transporter in the membrane phase. In order to examine the molecular nature of the transporter and its effects on the lipid environment, we have established an efficient protocol for the purification and reconstitution of the functional protein. We found that the drug-stimulated ATPase and the transport activity of ABCG2 are fully preserved by applying excess lipids and mild detergents during solubilization, whereas a detergent-induced dissociation of the ABCG2 dimer causes an irreversible inactivation. By using the purified and reconstituted protein we demonstrate that cholesterol is an essential activator, whereas bile acids are important modulators of ABCG2 activity. Both wild-type ABCG2 and its R482G mutant variant require cholesterol for full activity, although they exhibit different cholesterol sensitivities. Bile acids strongly decrease the basal ABCG2-ATPase activity both in the wild-type ABCG2 and in the mutant variant. These data reinforce the results for the modulatory effects of cholesterol and bile acids of ABCG2 investigated in a complex cell membrane environment. Moreover, these experiments open the possibility to perform functional and structural studies with a purified, reconstituted and highly active ABCG2 multidrug transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/farmacologia , Colesterol/farmacologia , Lipídeos de Membrana/metabolismo , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/metabolismo , Ácidos e Sais Biliares/metabolismo , Transporte Biológico Ativo , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Humanos , Proteínas de Neoplasias/química , Células Sf9
18.
Eur J Pharm Sci ; 45(1-2): 101-9, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22115866

RESUMO

The ABCG2 multidrug transporter protein has been identified as a key player in cancer drug resistance and xenobiotic elimination, as its actively transported substrates include anticancer drugs, intermediates of heme metabolism, xenobiotics, and also drug conjugates. Several transported substrates at higher concentrations, and some anticancer agents even at low concentrations directly inhibit the ABCG2 transporter, thus it is difficult to provide estimation for pharmacologically important ABCG2-dependent interactions. In addition, as documented here, in mutant variants of the transporter, inhibitors of the wild-type ABCG2 may become actively transported substrates. In this paper we describe a rapid in vitro assay to identify transport modulation by measuring the cell surface interaction of a conformation sensitive monoclonal antibody (5D3) with ABCG2 in intact cells. As documented, in conjunction with membrane ATPase, transport and cytotoxicity measurements, this assay provides a reliable estimate of concentration-dependent modulation of ABCG2 by newly emerging pharmacophores. A high-throughput, 96-well plate assay platform is also provided.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Reações Antígeno-Anticorpo/efeitos dos fármacos , Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticorpos Monoclonais/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Ligantes , Moduladores de Transporte de Membrana/farmacologia , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Concentração Osmolar , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo
19.
Adv Drug Deliv Rev ; 61(1): 47-56, 2009 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19135105

RESUMO

The major aim of this chapter is to provide a critical overview of the in vitro methods available for studying the function of the ABCG2 multidrug transporter protein. When describing the most applicable assay systems, in each case we present a short overview relevant to ABC multidrug transporters in general, and then we concentrate on the tools applicable to analysis of substrate-drug interactions, the effects of potential activators and inhibitors, and the role of polymorphisms of the ABCG2 transporter. Throughout this chapter we focus on recently developed assay systems, which may provide new possibilities for analyzing the pharmacological aspects of this medically important protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Bioensaio/métodos , Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Interações Medicamentosas , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Especificidade por Substrato
20.
Biochim Biophys Acta ; 1768(11): 2698-713, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17662239

RESUMO

The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Colesterol/fisiologia , Lipídeos de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Estradiol/análogos & derivados , Estradiol/farmacocinética , Humanos , Metotrexato/farmacocinética , Spodoptera , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA