Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 115(2): 299-308, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37971208

RESUMO

A physiologically-based pharmacokinetic (PBPK) model was developed to simulate plasma concentrations of tucatinib (TUKYSA®) after single-dose or multiple-dose administration of 300 mg b.i.d. orally. This PBPK model was subsequently applied to support evaluation of drug-drug interaction (DDI) risk as a perpetrator resulting from tucatinib inhibition of CYP3A4, CYP2C8, CYP2C9, P-gp, or MATE1/2-K. The PBPK model was also applied to support evaluation of DDI risk as a victim resulting from co-administration with CYP3A4 or CYP2C8 inhibitors, or a CYP3A4 inducer. After refinement with clinical DDI data, the final PBPK model was able to recover the clinically observed single and multiple-dose plasma concentrations for tucatinib when tucatinib was administered as a single agent in healthy subjects. In addition, the final model was able to recover clinically observed plasma concentrations of tucatinib when administered in combination with itraconazole, rifampin, or gemfibrozil as well as clinically observed plasma concentrations of probe substrates of CYP3A4, CYP2C8, CYP2C9, P-gp, or MATE1/2-K. The PBPK model was then applied to prospectively predict the potential perpetrator or victim DDIs with other substrates, inducers, or inhibitors. To simulate a potential interaction with a moderate CYP2C8 inhibitor, two novel PBPK models representing a moderate CYP2C8 inhibitor and a sensitive CYP2C8 substrate were developed based on the existing PBPK models for gemfibrozil and rosiglitazone, respectively. The simulated population geometric mean area under the curve ratio of tucatinib with a moderate CYP2C8 inhibitor ranged from 1.98- to 3.08-fold, and based on these results, no dose modifications were proposed for moderate CYP2C8 inhibitors for the tucatinib label.


Assuntos
Inibidores do Citocromo P-450 CYP2C8 , Genfibrozila , Oxazóis , Piridinas , Quinazolinas , Humanos , Genfibrozila/farmacocinética , Citocromo P-450 CYP3A , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Interações Medicamentosas , Modelos Biológicos , Inibidores do Citocromo P-450 CYP3A
2.
AAPS J ; 25(4): 62, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344751

RESUMO

Itraconazole is a potent inhibitor of cytochrome P450 3A4 (CYP3A4), associated with numerous drug-drug interactions (DDI). PUR1900, a dry powder formulation of itraconazole for oral inhalation, results in high lung and low systemic exposure. This project used physiologically based pharmacokinetic (PBPK) modeling to assess the DDI potential of inhaled PUR1900, using midazolam as a "victim drug." The basic and mechanistic static models evaluated the DDI potential of PUR1900, assuming 5 mg of midazolam coadministration at steady-state itraconazole exposure. Subsequently, Simcyp® PBPK simulation software and pharmacokinetic data from a Phase 1 clinical trial with PUR1900 (NCT03479411) were used to optimize an existing itraconazole PBPK model. The model was applied to investigate the potential for CYP3A4 DDI when 5 mg of midazolam is co-administered with inhaled PUR1900 at a steady state in a virtual healthy population at PUR1900 doses up to 40 mg per day. The basic static and mechanistic static models suggested a strong likelihood for DDI with inhaled PUR1900. The PBPK model was consistent with PUR1900 Phase 1 trial data. The geometric mean Cmax and AUC ratios of midazolam at a maximum dose of 40 mg PUR1900 were 1.14 and 1.26, respectively, indicating a minimal likelihood of DDI with inhaled PUR1900. The low systemic exposure of itraconazole when administered as PUR1900 results in minimal to no CYP3A4 inhibition, reducing the concern of drug-drug interactions. As the risk of CYP3A4 DDI is predicted to be significantly lower when itraconazole is administered via oral inhalation as PUR1900, it is likely that PUR1900 can be safely used for the treatment of pulmonary fungal infections in patients taking pharmaceuticals currently contraindicated with oral itraconazole.


Assuntos
Itraconazol , Midazolam , Humanos , Itraconazol/farmacocinética , Midazolam/farmacocinética , Modelos Biológicos , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A , Interações Medicamentosas
3.
AAPS J ; 20(2): 31, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29441439

RESUMO

Interest in determining safe and efficacious doses for drug administration in pediatric patients has increased dramatically in recent years. However, published pediatric clinical studies have failed to increase proportionally with adult clinical study publications. In order to assess the current state of pediatric dose determination and the supporting role of physiologically based pharmacokinetic modeling and simulation in determining pediatric dose, the pediatric clinical literature (2006-2016) and case examples of pediatric PBPK modeling efforts were reviewed. The objective of this assessment was to investigate the contribution of PBPK to our understanding of the differences between children and adults, which lead to differences in drug dose. Pediatric and adult dose data were available for 31 small molecule drugs. In general, pediatric dose was well-correlated with adult data, with an apparent tendency for higher body weight- or body surface area-normalized pediatric dose. Overall performance of pediatric PBPK modeling approaches was considered to adequately predict observed data. However, model performance was dependent upon age group simulated, with approximately half of neonatal predictions falling outside of 1.5-fold of observed. In conclusion, there is a clear need for further refinement of starting dose in pediatric phase 1 studies, and utilization of PBPK could lead to reduced numbers of patients required to establish safe and efficacious doses in the pediatric population.


Assuntos
Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem , Farmacocinética , Adulto , Fatores Etários , Criança , Ensaios Clínicos Fase I como Assunto , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos
4.
Curr Opin Pharmacol ; 23: 61-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26057212

RESUMO

The development of MEK inhibitors has led to improved progression-free survival in patients with mutant BRAF(V600) cancers when used in combination with BRAF inhibitors. However, resistance to combination therapy remains an issue. This review summarizes our current understanding of the role of MEK in cancer cell proliferation and the mechanisms which lead to resistance in patients. Specific adverse events, which have been linked to the MEK inhibitor class, have been described. Future combinations of MEK inhibitors with other cancer therapy options, currently under investigation in clinical trials, are also discussed.


Assuntos
Antineoplásicos/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Previsões , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias/enzimologia , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA