Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(4): 1605-1619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856342

RESUMO

Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.


Assuntos
Actinidia , Doenças das Plantas , Doenças das Plantas/microbiologia , Bactérias , Virulência , Imunidade Vegetal , Reconhecimento da Imunidade Inata , Pseudomonas syringae , Proteínas de Bactérias
2.
Environ Microbiol ; 24(10): 4834-4852, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912527

RESUMO

Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.


Assuntos
Actinidia , Bacteriófagos , Actinidia/microbiologia , Antibacterianos , Bacteriófagos/genética , Cobre , Microscopia Crioeletrônica , Glicosiltransferases , Lipopolissacarídeos , Doenças das Plantas/microbiologia , Proteoma , Pseudomonas syringae/genética
3.
PLoS Pathog ; 18(5): e1010542, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35622878

RESUMO

A pandemic isolate of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has devastated kiwifruit orchards growing cultivars of Actinidia chinensis. In contrast, A. arguta (kiwiberry) is not a host of Psa3. Resistance is mediated via effector-triggered immunity, as demonstrated by induction of the hypersensitive response in infected A. arguta leaves, observed by microscopy and quantified by ion-leakage assays. Isolates of Psa3 that cause disease in A. arguta have been isolated and analyzed, revealing a 51 kb deletion in the exchangeable effector locus (EEL). This natural EEL-mutant isolate and strains with synthetic knockouts of the EEL were more virulent in A. arguta plantlets than wild-type Psa3. Screening of a complete library of Psa3 effector knockout strains identified increased growth in planta for knockouts of four effectors-AvrRpm1a, HopF1c, HopZ5a, and the EEL effector HopAW1a -suggesting a resistance response in A. arguta. Hypersensitive response (HR) assays indicate that three of these effectors trigger a host species-specific HR. A Psa3 strain with all four effectors knocked out escaped host recognition, but a cumulative increase in bacterial pathogenicity and virulence was not observed. These avirulence effectors can be used in turn to identify the first cognate resistance genes in Actinidia for breeding durable resistance into future kiwifruit cultivars.


Assuntos
Actinidia , Pseudomonas syringae , Actinidia/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta , Pseudomonas syringae/genética , Virulência
4.
Mol Plant Pathol ; 21(11): 1467-1480, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969167

RESUMO

Pseudomonas syringae pv. actinidiae ICMP 18884 biovar 3 (Psa3) produces necrotic lesions during infection of its kiwifruit host. Bacterial growth in planta and lesion formation are dependent upon a functional type III secretion system (T3S), which translocates multiple effector proteins into host cells. Associated with the T3S locus is the conserved effector locus (CEL), which has been characterized and shown to be essential for the full virulence in other P. syringae pathovars. Two effectors at the CEL, hopM1 and avrE1, as well as an avrE1-related non-CEL effector, hopR1, have been shown to be redundant in the model pathogen P. syringae pv. tomato DC3000 (Pto), a close relative of Psa. However, it is not known whether CEL-related effectors are required for Psa pathogenicity. The Psa3 allele of hopM1, and its associated chaperone, shcM, have diverged significantly from their orthologs in Pto. Furthermore, the CEL effector hopAA1-1, as well as a related non-CEL effector, hopAA1-2, have both been pseudogenized. We have shown that HopM1 does not contribute to Psa3 virulence due to a truncation in shcM, a truncation conserved in the Psa lineage, probably due to the need to evade HopM1-triggered immunity in kiwifruit. We characterized the virulence contribution of CEL and related effectors in Psa3 and found that only avrE1 and hopR1, additively, are required for in planta growth and lesion production. This is unlike the redundancy described for these effectors in Pto and indicates that these two Psa3 genes are key determinants essential for kiwifruit bacterial canker disease.


Assuntos
Actinidia/microbiologia , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/genética , Frutas/microbiologia , Loci Gênicos/genética , Chaperonas Moleculares , Folhas de Planta/microbiologia , Pseudomonas syringae/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética
5.
Environ Microbiol ; 22(12): 5356-5372, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985740

RESUMO

The common polysaccharide antigen (CPA) of the lipopolysaccharide (LPS) from Pseudomonas syringae is highly variable, but the genetic basis for this is poorly understood. We have characterized the CPA locus from P. syringae pv. actinidiae (Psa). This locus has genes for l- and d-rhamnose biosynthesis and an operon coding for ABC transporter subunits, a bifunctional glycosyltransferase and an o-methyltransferase. This operon is predicted to have a role in the transport, elongation and termination of the CPA oligosaccharide and is referred to as the TET operon. Two alleles of the TET operon were present in different biovars (BV) of Psa and lineages of the closely related pathovar P. syringae pv. actinidifoliorum. This allelic variation was reflected in the electrophoretic properties of purified LPS from the different isolates. Gene knockout of the TET operon allele from BV1 and replacement with that from BV3, demonstrated the link between the genetic locus and the biochemical properties of the LPS molecules in Psa. Sequence analysis of the TET operon from a range of P. syringae and P. viridiflava isolates displayed a phylogenetic history incongruent with core gene phylogeny but correlates with previously reported tailocin sensitivity, suggesting a functional relationship between LPS structure and tailocin susceptibility.


Assuntos
Lipopolissacarídeos/genética , Polissacarídeos Bacterianos/genética , Pseudomonas syringae/genética , Proteínas de Bactérias/genética , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana/genética , Variação Genética , Lipopolissacarídeos/química , Óperon , Filogenia , Doenças das Plantas/microbiologia , Pseudomonas syringae/classificação , Pseudomonas syringae/isolamento & purificação
6.
BMC Res Notes ; 12(1): 63, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691538

RESUMO

OBJECTIVE: Bacterial canker is a destructive disease of kiwifruit caused by the Gram-negative bacterium Pseudomonas syringae pv. actinidiae (Psa). To understand the disease-causing mechanism of Psa, a kiwifruit yeast two-hybrid cDNA library was constructed to identify putative host targets of the Psa Type Three Secreted Effector AvrPto5. RESULTS: In this study, we used the Mate & Plate™ yeast two-hybrid library method for constructing a kiwifruit cDNA library from messenger RNA of young leaves. The constructed library consisted of 2.15 × 106 independent clones with an average insert size of 1.52 kb. The screening of the kiwifruit yeast two-hybrid cDNA library with Psa AvrPto5 revealed the interaction of a V-type proton ATPase subunit-H, a proline rich-protein and heavy metal-associated isoprenylated plant protein 26. Among these, heavy metal-associated isoprenylated plant protein 26 showed a positive interaction with Psa AvrPto5 as both prey and bait.


Assuntos
Actinidia , Proteínas de Bactérias , Frutas , Biblioteca Gênica , Doenças das Plantas , Folhas de Planta , Pseudomonas syringae , Leveduras
7.
BMC Genomics ; 19(1): 822, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442113

RESUMO

BACKGROUND: Pseudomonas syringae is a widespread bacterial species complex that includes a number of significant plant pathogens. Amongst these, P. syringae pv. actinidiae (Psa) initiated a worldwide pandemic in 2008 on cultivars of Actinidia chinensis var. chinensis. To gain information about the expression of genes involved in pathogenicity we have carried out transcriptome analysis of Psa during the early stages of kiwifruit infection. RESULTS: Gene expression in Psa was investigated during the first five days after infection of kiwifruit plantlets, using RNA-seq. Principal component and heatmap analyses showed distinct phases of gene expression during the time course of infection. The first phase was an immediate transient peak of induction around three hours post inoculation (HPI) that included genes that code for a Type VI Secretion System and nutrient acquisition (particularly phosphate). This was followed by a significant commitment, between 3 and 24 HPI, to the induction of genes encoding the Type III Secretion System (T3SS) and Type III Secreted Effectors (T3SE). Expression of these genes collectively accounted for 6.3% of the bacterial transcriptome at this stage. There was considerable variation in the expression levels of individual T3SEs but all followed the same temporal expression pattern, with the exception of hopAS1, which peaked later in expression at 48 HPI. As infection progressed over the time course of five days, there was an increase in the expression of genes with roles in sugar, amino acid and sulfur transport and the production of alginate and colanic acid. These are both polymers that are major constituents of extracellular polysaccharide substances (EPS) and are involved in biofilm production. Reverse transcription-quantitative PCR (RT-qPCR) on an independent infection time course experiment showed that the expression profile of selected bacterial genes at each infection phase correlated well with the RNA-seq data. CONCLUSIONS: The results from this study indicate that there is a complex remodeling of the transcriptome during the early stages of infection, with at least three distinct phases of coordinated gene expression. These include genes induced during the immediate contact with the host, those involved in the initiation of infection, and finally those responsible for nutrient acquisition.


Assuntos
Actinidia/microbiologia , Regulação Bacteriana da Expressão Gênica , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Doenças das Plantas/microbiologia , Fatores de Tempo , Virulência/genética
8.
Environ Microbiol ; 20(6): 2066-2084, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29521473

RESUMO

Interactions between commensal microbes and invading pathogens are understudied, despite their likely effects on pathogen population structure and infection processes. We describe the population structure and genetic diversity of a broad range of co-occurring Pseudomonas syringae isolated from infected and uninfected kiwifruit during an outbreak of bleeding canker disease caused by P. syringae pv. actinidiae (Psa) in New Zealand. Overall population structure was clonal and affected by ecological factors including infection status and cultivar. Most isolates are members of a new clade in phylogroup 3 (PG3a), also present on kiwifruit leaves in China and Japan. Stability of the polymorphism between pathogenic Psa and commensal P. syringae PG3a isolated from the same leaf was tested using reciprocal invasion from rare assays in vitro and in planta. P. syringae G33C (PG3a) inhibited Psa NZ54, while the presence of Psa NZ54 enhanced the growth of P. syringae G33C. This effect could not be attributed to virulence activity encoded by the Type 3 secretion system of Psa. Together our data contribute toward the development of an ecological perspective on the genetic structure of pathogen populations.


Assuntos
Actinidia/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/genética , Movimento , Virulência
9.
Sci Rep ; 7(1): 3557, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620210

RESUMO

Type-III secreted effectors (T3Es) play critical roles during bacterial pathogenesis in plants. Plant recognition of certain T3Es can trigger defence, often accompanied by macroscopic cell death, termed the hypersensitive response (HR). Economically important species of kiwifruit are susceptible to Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit bacterial canker. Although Psa is non-pathogenic in Arabidopsis thaliana, we observed that a T3E, HopZ5 that is unique to a global outbreak clade of Psa, triggers HR and defence in Arabidopsis accession Ct-1. Ws-2 and Col-0 accessions are unable to produce an HR in response to Pseudomonas-delivered HopZ5. While Ws-2 is susceptible to virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 carrying HopZ5, Col-0 is resistant despite the lack of an HR. We show that HopZ5, like other members of the YopJ superfamily of acetyltransferases that it belongs to, autoacetylates lysine residues. Through comparisons to other family members, we identified an acetyltransferase catalytic activity and demonstrate its requirement for triggering defence in Arabidopsis and Nicotiana species. Collectively, data herein indicate that HopZ5 is a plasma membrane-localized acetyltransferase with autoacetylation activity required for avirulence.


Assuntos
Acetiltransferases/imunologia , Antígenos de Bactérias/imunologia , Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Hipersensibilidade/imunologia , Arabidopsis/microbiologia , Morte Celular/genética , Morte Celular/imunologia , Membrana Celular/metabolismo , Hipersensibilidade/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/imunologia , Pseudomonas syringae/metabolismo , Sistemas de Secreção Tipo III/imunologia
10.
Genome Biol Evol ; 9(4): 932-944, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369338

RESUMO

Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose.


Assuntos
Actinidia/microbiologia , Filogeografia , Doenças das Plantas/genética , Pseudomonas syringae/genética , Actinidia/genética , China , Frutas/microbiologia , Variação Genética , Nova Zelândia , Pandemias , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade
11.
PLoS One ; 12(3): e0172790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249011

RESUMO

Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a 'phenotype of interest' (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with 'Fuzzy-Spreader'-like morphologies were also identified through a visual screen. The second, a 'mutant of interest' (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA-binding proteins or by the architecture of the nucleoid.


Assuntos
Actinidia/microbiologia , Elementos de DNA Transponíveis , Frutas/microbiologia , Mutação INDEL , Mutagênese Insercional , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Biblioteca Gênica
12.
Environ Microbiol ; 19(2): 819-832, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28063194

RESUMO

Horizontal gene transfer can precipitate rapid evolutionary change. In 2010 the global pandemic of kiwifruit canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) reached New Zealand. At the time of introduction, the single clone responsible for the outbreak was sensitive to copper, however, analysis of a sample of isolates taken in 2015 and 2016 showed that a quarter were copper resistant. Genome sequences of seven strains showed that copper resistance - comprising czc/cusABC and copABCD systems - along with resistance to arsenic and cadmium, was acquired via uptake of integrative conjugative elements (ICEs), but also plasmids. Comparative analysis showed ICEs to have a mosaic structure, with one being a tripartite arrangement of two different ICEs and a plasmid that were isolated in 1921 (USA), 1968 (NZ) and 1988 (Japan), from P. syringae pathogens of millet, wheat and kiwifruit respectively. Two of the Psa ICEs were nearly identical to two ICEs isolated from kiwifruit leaf colonists prior to the introduction of Psa into NZ. Additionally, we show ICE transfer in vitro and in planta, analyze fitness consequences of ICE carriage, capture the de novo formation of novel recombinant ICEs, and explore ICE host-range.


Assuntos
Actinidia/microbiologia , Conjugação Genética , Cobre/farmacologia , Farmacorresistência Bacteriana , Doenças das Plantas/microbiologia , Plasmídeos/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/genética , Evolução Biológica , Frutas/microbiologia , Especificidade de Hospedeiro , Plasmídeos/metabolismo , Pseudomonas syringae/fisiologia
13.
FEBS J ; 281(17): 3955-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039985

RESUMO

Arabidopsis thaliana (At) RPM1-interacting protein 4 (RIN4), targeted by many defence-suppressing bacterial type III effectors and monitored by several resistance proteins, regulates plant immune responses to pathogen-associated molecular patterns and type III effectors. Little is known about the overall protein structure of AtRIN4, especially in its unbound form, and the relevance of structure to its diverse biological functions. AtRIN4 contains two nitrate-induced (NOI) domains and is a member of the NOI family. Using experimental and bioinformatic approaches, we demonstrate that the unbound AtRIN4 is intrinsically disordered under physiological conditions. The intrinsically disordered polypeptide chain of AtRIN4 is interspersed with molecular recognition features (MoRFs) and anchor-identified long-binding regions, potentially allowing it to undergo disorder-to-order transitions upon binding to partner(s). A poly-l-proline II structure, often responsible for protein recognition, is also identified in AtRIN4. By performing bioinformatics analyses on RIN4 homologues from different plant species and the NOI proteins from Arabidopsis, we infer the conservation of intrinsic disorder, MoRFs and long-binding regions of AtRIN4 in other plant species and the NOI family. Intrinsic disorder and MoRFs could provide RIN4 proteins with the binding promiscuity and plasticity required to act as hubs in a pivotal position within plant defence signalling cascades.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Transporte/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Plantas/química , Plantas/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura , Trifluoretanol/farmacologia , Tripsina/metabolismo
14.
PLoS Pathog ; 9(7): e1003503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935484

RESUMO

The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.


Assuntos
Actinidia/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Actinidia/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Ilhas Genômicas , Itália , Japão , Nova Zelândia , Filogenia , Doenças das Plantas/etiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/isolamento & purificação , Pseudomonas syringae/patogenicidade , Recombinação Genética , República da Coreia , Especificidade da Espécie , Virulência
15.
Biochim Biophys Acta ; 1824(10): 1118-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22771296

RESUMO

Venturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues with eight imperfect tandem repeats of ~60 amino acids. The Cin1 sequence has no homology to known proteins and appears to be genus-specific; however, Cin1 repeats and other repeat domains may be structurally similar. An NMR-derived structure of the first two repeat domains of Cin1 (Cin1-D1D2) and a low-resolution model of the full-length protein (Cin1-FL) using SAXS data were determined. The structure of Cin1-D1D2 reveals that each domain comprises a core helix-loop-helix (HLH) motif as part of a three-helix bundle, and is stabilized by two intra-domain disulfide bonds. Cin1-D1D2 adopts a unique protein fold as DALI and PDBeFOLD analysis identified no structural homology. A (15)N backbone NMR dynamic analysis of Cin1-D1D2 showed that a short stretch of the inter-domain linker has large amplitude motions that give rise to reciprocal domain-domain mobility. This observation was supported by SAXS data modeling, where the scattering length density envelope remains thick at the domain-domain boundary, indicative of inter-domain dynamics. Cin1-FL SAXS data models a loosely-packed arrangement of domains, rather than the canonical parallel packing of adjacent HLH repeats observed in α-solenoid repeat proteins. Together, these data suggest that the repeat domains of Cin1 display a "beads-on-a-string" organization with inherent inter-domain flexibility that is likely to facilitate interactions with target ligands.


Assuntos
Proteínas Fúngicas/química , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional , Primers do DNA , Proteínas Fúngicas/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos
16.
Mol Plant Pathol ; 10(3): 431-48, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19400844

RESUMO

The hemi-biotrophic fungus Venturia inaequalis infects members of the Maloideae, causing the economically important apple disease, scab. The plant-pathogen interaction of Malus and V. inaequalis follows the gene-for-gene model. cDNA libraries were constructed, and bioinformatic analysis of the resulting expressed sequence tags (ESTs) was used to characterize potential effector genes. Effectors are small proteins, secreted in planta, that are assumed to facilitate infection. Therefore, a cDNA library was constructed from a compatible interaction. To distinguish pathogen from plant sequences, the library was probed with genomic DNA from V. inaequalis to enrich for pathogen genes, and cDNA libraries were constructed from in vitro-grown material. A suppression subtractive hybridization library enriched for cellophane-induced genes was included, as growth on cellophane may mimic that in planta, with the differentiation of structures resembling those formed during plant colonization. Clustering of ESTs from the in planta and in vitro libraries indicated a fungal origin of the resulting non-redundant sequence. A total of 937 ESTs was classified as putatively fungal, which could be assembled into 633 non-redundant sequences. Sixteen new candidate effector genes were identified from V. inaequalis based on features common to characterized effector genes from filamentous fungi, i.e. they encode a small, novel, cysteine-rich protein, with a putative signal peptide. Three of the 16 candidates, in particular, conformed to most of the protein structural characteristics expected of fungal effectors and showed significant levels of transcriptional up-regulation during in planta growth. In addition to candidate effector genes, this collection of ESTs represents a valuable genomic resource for V. inaequalis.


Assuntos
Ascomicetos/genética , Etiquetas de Sequências Expressas , Genes Fúngicos , Doenças das Plantas/microbiologia , Biologia Computacional , DNA Fúngico/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Malus/genética , Malus/microbiologia , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Protein Expr Purif ; 65(2): 140-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297691

RESUMO

The phytopathogenic fungus Venturia inaequalis causes scab of apple. Once this fungus penetrates the plant surface, it forms a specialized body called a stroma between the inner cuticle surface and the epidermal cell wall. A novel V. inaequalis gene, cin1, is strongly up-regulated in the early stages of infection. This gene codes for a 523 residue secreted protein, containing eight imperfect repeats of approximately 60 amino acids. Cin1 was expressed in the methanolytic yeast Pichia pastoris using the pPICZ vector system. A protein of 57 kDa was secreted by these transformants and peptide fingerprinting indicated that it was the Cin1 protein product. Multiple angle laser light scattering confirmed the predicted mass of Cin1, showing it was not glycosylated by Pichia and was monomeric in solution. Through measurements of the hydrodynamic properties of Cin1, the experimental Stokes radius of Cin1 was calculated and corresponded to the theoretical value for a natively folded globular protein of size 57 kDa. The mobility of recombinant Cin1 on native PAGE was also consistent with that of a folded protein. To simplify future structural analyses, a two-domain truncated version, Cin1-2D, consisting of domains one and two, was also expressed using the same vector system. Both proteins were purified to homogeneity. Conditions for maximal (>98%) incorporation of 13C and 15N were determined. A mouse polyclonal antibody and three monoclonal antibodies (MAbs) were raised against the full-length version of Cin1. Analysis of the three MAbs using surface plasmon resonance indicated binding to distinct epitopes on the Cin1 protein. Western blots confirmed the different specificities of each MAb.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Animais , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Western Blotting , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Marcação por Isótopo , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Regulação para Cima
18.
Fungal Genet Biol ; 45(10): 1329-39, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18692586

RESUMO

Venturia inaequalis is a hemibiotrophic ascomycete that causes apple scab. Germ tubes, from conidia or ascospores, penetrate the leaf or fruit surface directly via appressoria-like swellings; subsequently the hyphae divide laterally to form a stroma between the cuticle and the outer wall of the epidermal cells. This morphological switch can be mimicked by growing the fungus in vitro on cellophane discs. The aim of this work was to identify genes upregulated in planta using growth on cellophane as a model. Four cDNA clones were found to be induced by growth on cellophane, and qRT-PCR showed two of these genes were up-regulated over a thousand fold in infected apple leaves compared to liquid culture. The predicted proteins for both genes possess putative signal peptides for secretion but have no similarity to sequences in publicly available databases. Both genes encode proteins with novel, imperfect repeat domain structures, the number of which vary in an isolate-specific fashion. Cin1 has seven or eight repeats of about 60 amino acids with four conserved cysteine residues per repeat, while Cin3 has four or five repeats of 32 amino acids with no cysteines. Both proteins appear to have evolved through internal duplication. Cin3, in particular, shows considerable between-strain variation in domain structure, indicating a high degree of recombination at this locus and revealing that the repeat structure has most likely arisen by unequal crossing-over. Results of this study support the hypothesis that cellophane-grown V. inaequalis mimics aspects of biotrophic infection and provide the first insights into novel fungal genes expressed during apple scab infection and their mechanisms of evolution.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Celofane , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Malus/microbiologia , Morfogênese , Doenças das Plantas/microbiologia , Regulação para Cima , Sequência de Aminoácidos , Ascomicetos/química , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência
19.
J Mol Biol ; 382(3): 708-20, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18674544

RESUMO

Class I hydrophobins are fungal proteins that self-assemble into robust amphipathic rodlet monolayers on the surface of aerial structures such as spores and fruiting bodies. These layers share many structural characteristics with amyloid fibrils and belong to the growing family of functional amyloid-like materials produced by microorganisms. Although the three-dimensional structure of the soluble monomeric form of a class I hydrophobin has been determined, little is known about the molecular structure of the rodlets or their assembly mechanism. Several models have been proposed, some of which suggest that the Cys3-Cys4 loop has a critical role in the initiation of assembly or in the polymeric structure. In order to provide insight into the relationship between hydrophobin sequence and rodlet assembly, we investigated the role of the Cys3-Cys4 loop in EAS, a class I hydrophobin from Neurospora crassa. Remarkably, deletion of up to 15 residues from this 25-residue loop does not impair rodlet formation or reduce the surface activity of the protein, and the physicochemical properties of rodlets formed by this mutant are indistinguishable from those of its full-length counterpart. In addition, the core structure of the truncation mutant is essentially unchanged. Molecular dynamics simulations carried out on the full-length protein and this truncation mutant binding to an air-water interface show that, although it is hydrophobic, the loop does not play a role in positioning the protein at the surface. These results demonstrate that the Cys3-Cys4 loop does not have an integral role in the formation or structure of the rodlets and that the major determinant of the unique properties of these proteins is the amphipathic core structure, which is likely to be preserved in all hydrophobins despite the high degree of sequence variation across the family.


Assuntos
Cisteína/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Neurospora crassa , Estrutura Terciária de Proteína , Ar , Sequência de Aminoácidos , Simulação por Computador , Cristalografia por Raios X , Cisteína/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Neurospora crassa/citologia , Neurospora crassa/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Propriedades de Superfície , Água
20.
Micron ; 39(7): 773-84, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17875392

RESUMO

Hydrophobins are a remarkable class of small cysteine-rich proteins found exclusively in fungi. They self-assemble to form robust polymeric monolayers that are highly amphipathic and play numerous roles in fungal biology, such as in the formation and dispersal of aerial spores and in pathogenic and mutualistic interactions. The polymeric form can be reversibly disassembled and is able to reverse the wettability of a surface, leading to many proposals for nanotechnological applications over recent years. The surprising properties of hydrophobins and their potential for commercialization have led to substantial efforts to delineate their morphology and molecular structure. In this review, we summarize the progress that has been made using a variety of spectroscopic and microscopic approaches towards understanding the molecular mechanisms underlying hydrophobin structure.


Assuntos
Proteínas Fúngicas/fisiologia , Fungos/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA