Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Arch Toxicol ; 98(9): 2919-2935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38832940

RESUMO

Okadaic acid (OA), a prevalent marine biotoxin found in shellfish, is known for causing acute gastrointestinal symptoms. Despite its potential to reach the bloodstream and the liver, the hepatic effects of OA are not well understood, highlighting a significant research gap. This study aims to comprehensively elucidate the impact of OA on the liver by examining the transcriptome, proteome, and phosphoproteome alterations in human HepaRG liver cells exposed to non-cytotoxic OA concentrations. We employed an integrative multi-omics approach, encompassing RNA sequencing, shotgun proteomics, phosphoproteomics, and targeted DigiWest analysis. This enabled a detailed exploration of gene and protein expression changes, alongside phosphorylation patterns under OA treatment. The study reveals concentration- and time-dependent deregulation in gene and protein expression, with a significant down-regulation of xenobiotic and lipid metabolism pathways. Up-regulated pathways include actin crosslink formation and a deregulation of apoptotic pathways. Notably, our results revealed that OA, as a potent phosphatase inhibitor, induces alterations in actin filament organization. Phosphoproteomics data highlighted the importance of phosphorylation in enzyme activity regulation, particularly affecting proteins involved in the regulation of the cytoskeleton. OA's inhibition of PP2A further leads to various downstream effects, including alterations in protein translation and energy metabolism. This research expands the understanding of OA's systemic impact, emphasizing its role in modulating the phosphorylation landscape, which influences crucial cellular processes. The results underscore OA's multifaceted effects on the liver, particularly through PP2A inhibition, impacting xenobiotic metabolism, cytoskeletal dynamics, and energy homeostasis. These insights enhance our comprehension of OA's biological significance and potential health risks.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácido Okadáico , Proteômica , Ácido Okadáico/toxicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Carcinoma Hepatocelular/metabolismo , Fosforilação , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Transcriptoma/efeitos dos fármacos , Toxinas Marinhas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Multiômica
2.
J Exp Clin Cancer Res ; 43(1): 77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475864

RESUMO

BACKGROUND: The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS: We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS: ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION: In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.


Assuntos
Glioma , Peixe-Zebra , Camundongos , Animais , Linhagem Celular Tumoral , Reparo do DNA , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Front Immunol ; 15: 1357340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504975

RESUMO

In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.


Assuntos
Neoplasias Peritoneais , Peritônio , Humanos , Peritônio/metabolismo , Macrófagos Peritoneais , Macrófagos , Cavidade Peritoneal , Neoplasias Peritoneais/metabolismo , Estresse Oxidativo
4.
Nat Commun ; 15(1): 1287, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346946

RESUMO

Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos de Fenilureia , Quinolinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia
5.
J Exp Clin Cancer Res ; 42(1): 210, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596623

RESUMO

Despite tremendous progress in deciphering breast cancer at the genomic level, the pronounced intra- and intertumoral heterogeneity remains a major obstacle to the advancement of novel and more effective treatment approaches. Frequent treatment failure and the development of treatment resistance highlight the need for patient-derived tumor models that reflect the individual tumors of breast cancer patients and allow a comprehensive analyses and parallel functional validation of individualized and therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we introduce the generation and application of breast cancer patient-derived 3D microtumors (BC-PDMs). Residual fresh tumor tissue specimens were collected from n = 102 patients diagnosed with breast cancer and subjected to BC-PDM isolation. BC-PDMs retained histopathological characteristics, and extracellular matrix (ECM) components together with key protein signaling pathway signatures of the corresponding primary tumor tissue. Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and its key signal transduction properties. DigiWest®-based protein expression profiling of identified treatment responder and non-responder BC-PDMs enabled the identification of potential resistance and sensitivity markers of individual drug treatments, including markers previously associated with treatment response and yet undescribed proteins. The combination of individualized drug testing with comprehensive protein profiling analyses of BC-PDMs may provide a valuable complement for personalized treatment stratification and response prediction for breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mama , Genômica , Transdução de Sinais
6.
Tissue Eng Part C Methods ; 29(11): 493-504, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470213

RESUMO

In regenerative medicine, extracellular vesicles (EVs) are considered as a promising cell-free approach. EVs are lipid bilayer-enclosed vesicles secreted by cells and are key players in intercellular communication. EV-based therapeutic approaches have unique advantages over the use of cell-based therapies, such as a high biological, but low immunogenic and tumorigenic potential. To analyze the purity and biochemical composition of EV preparations, the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins coisolated/recovered with EVs. Traditional methods for EV characterization, such as Western blotting, require a relatively high EV sample/protein input for the analysis of one protein. We here evaluate a combined Western and bead-based multiplex platform, called DigiWest, for its ability to detect simultaneously multiple EV markers in an EV-containing sample with inherent low protein input. DigiWest analysis was performed on EVs from various sources and species, including mesenchymal stromal cells, notochordal cells, and milk, from human, pig, and dog. The study established a panel of nine antibodies that can be used as cross-species for the detection of general EV markers and coisolates in accordance with the ISEV guidelines. This optimized panel facilitates the parallel evaluation of EV-containing samples, allowing for a comprehensive characterization and assessment of their purity. The total protein input for marker analysis with DigiWest was 1 µg for all nine antibodies, compared with ∼10 µg protein input required for traditional Western blotting for one antibody. These findings demonstrate the potential of the DigiWest technique for characterizing various types of EVs in the regenerative medicine field.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Animais , Cães , Suínos , Vesículas Extracelulares/química , Células-Tronco Mesenquimais/metabolismo , Biomarcadores/metabolismo , Proteínas/metabolismo , Comunicação Celular
7.
Cells ; 12(5)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36899906

RESUMO

Okadaic acid (OA) is a marine biotoxin that is produced by algae and accumulates in filter-feeding shellfish, through which it enters the human food chain, leading to diarrheic shellfish poisoning (DSP) after ingestion. Furthermore, additional effects of OA have been observed, such as cytotoxicity. Additionally, a strong downregulation of the expression of xenobiotic-metabolizing enzymes in the liver can be observed. The underlying mechanisms of this, however, remain to be examined. In this study, we investigated a possible underlying mechanism of the downregulation of cytochrome P450 (CYP) enzymes and the nuclear receptors pregnane X receptor (PXR) and retinoid-X-receptor alpha (RXRα) by OA through NF-κB and subsequent JAK/STAT activation in human HepaRG hepatocarcinoma cells. Our data suggest an activation of NF-κB signaling and subsequent expression and release of interleukins, which then activate JAK-dependent signaling and thus STAT3. Moreover, using the NF-κB inhibitors JSH-23 and Methysticin and the JAK inhibitors Decernotinib and Tofacitinib, we were also able to demonstrate a connection between OA-induced NF-κB and JAK signaling and the downregulation of CYP enzymes. Overall, we provide clear evidence that the effect of OA on the expression of CYP enzymes in HepaRG cells is regulated through NF-κB and subsequent JAK signaling.


Assuntos
Neoplasias Hepáticas , NF-kappa B , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , NF-kappa B/metabolismo , Ácido Okadáico , Transdução de Sinais , Xenobióticos , Janus Quinases/efeitos dos fármacos , Fatores de Transcrição STAT/efeitos dos fármacos
8.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555426

RESUMO

Human platelet lysate (HPL) is an efficient alternative for animal serum supplements, significantly enhancing stromal cell proliferation. However, the molecular mechanism behind this growth-promoting effect remains elusive. The aim of this study was to investigate the effect of HPL on cell cycle gene expression in different human stromal cells and to identify the main key players that mediate HPL's growth-enhancing effect. RT-qPCR and an antibody array revealed significant upregulation of cell cycle genes in stromal cells cultured in HPL. As HPL is rich in growth factors that are ligands of tyrosine kinase receptor (TKR) pathways, we used TKR inhibitors and could significantly reduce cell proliferation. Genome profiling, RT-qPCR and Western blotting revealed an enhanced expression of the transcription factors signal transducer and activator of transcription 3 (STAT3) and MYC, both known TKR downstream effectors and stimulators of cell proliferation, in response to HPL. In addition, specifically blocking STAT3 resulted in reduced cell proliferation and expression of cell cycle genes. Our data indicate that HPL-enhanced cell proliferation can, at least in part, be explained by the TKR-enhanced expression of STAT3 and MYC, which in turn induce the expression of genes being involved in the promotion and control of the cell cycle.


Assuntos
Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-myc , Fator de Transcrição STAT3 , Animais , Humanos , Plaquetas/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Estromais/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 1010092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329884

RESUMO

Protein expression, activation and stability are regulated through inter-connected signal transduction pathways resulting in specific cellular states. This study sought to differentiate between the complex mechanisms of intrinsic and acquired trastuzumab resistance, by quantifying changes in expression and activity of proteins (phospho-protein profile) in key signal transduction pathways, in breast cancer cellular models of trastuzumab resistance. To this effect, we utilized a multiplex, bead-based protein assay, DigiWest®, to measure around 100 proteins and protein modifications using specific antibodies. The main advantage of this methodology is the quantification of multiple analytes in one sample, utilising input volumes of a normal western blot. The intrinsically trastuzumab-resistant cell line JIMT-1 showed the largest number of concurrent resistance mechanisms, including PI3K/Akt and RAS/RAF/MEK/ERK activation, ß catenin stabilization by inhibitory phosphorylation of GSK3ß, cell cycle progression by Rb suppression, and CREB-mediated cell survival. MAPK (ERK) pathway activation was common to both intrinsic and acquired resistance cellular models. The overexpression of upstream RAS/RAF, however, was confined to JIMT 1; meanwhile, in a cellular model of acquired trastuzumab resistance generated in this study (T15), entry into the ERK pathway seemed to be mostly mediated by PKCα activation. This is a novel observation and merits further investigation that can lead to new therapeutic combinations in HER2-positive breast cancer with acquired therapeutic resistance.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Proteína Quinase C/metabolismo
10.
Cancers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139700

RESUMO

In cancer, the complex interplay between tumor cells and the tumor microenvironment results in the modulation of signaling processes. By assessing the expression of a multitude of proteins and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and the status of the immunological landscape is obtainable and may provide viable information on the treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy) were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16 and CD68 expression, immune cell infiltration was determined and revealed a strong correlation between event-free patient survival and the infiltration of immune cells. The presence of tumor-infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of tumor tissue provide functional signaling data facilitating breast cancer patient stratification.

11.
Cell Rep ; 40(7): 111181, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977490

RESUMO

The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.


Assuntos
Glicoesfingolipídeos , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Gangliosídeos/metabolismo , Globosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Humanos , Transdução de Sinais
12.
Cancers (Basel) ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35805024

RESUMO

Background: In colorectal cancer (CRC), mutations of genes associated with the TGF-ß/BMP signaling pathway, particularly affecting SMAD4, are known to correlate with decreased overall survival and it is assumed that this signaling axis plays a key role in chemoresistance. Methods: Using CRISPR technology on syngeneic patient-derived organoids (PDOs), we investigated the role of a loss-of-function of SMAD4 in sensitivity to MEK-inhibitors. CRISPR-engineered SMAD4R361H PDOs were subjected to drug screening, RNA-Sequencing, and multiplex protein profiling (DigiWest®). Initial observations were validated on an additional set of 62 PDOs with known mutational status. Results: We show that loss-of-function of SMAD4 renders PDOs sensitive to MEK-inhibitors. Multiomics analyses indicate that disruption of the BMP branch within the TGF-ß/BMP pathway is the pivotal mechanism of increased drug sensitivity. Further investigation led to the identification of the SFAB-signature (SMAD4, FBXW7, ARID1A, or BMPR2), coherently predicting sensitivity towards MEK-inhibitors, independent of both RAS and BRAF status. Conclusion: We identified a novel mutational signature that reliably predicts sensitivity towards MEK-inhibitors, regardless of the RAS and BRAF status. This finding poses a significant step towards better-tailored cancer therapies guided by the use of molecular biomarkers.

13.
Cancers (Basel) ; 14(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454839

RESUMO

(1) Background: Cervical intraepithelial neoplasia (CIN) of long-term persistence or associated with individual treatment indications often requires highly invasive treatments. These are associated with risks of bleeding, infertility, and pregnancy complications. For low- and middle-income countries (LMICs), standard treatment procedures are difficult to implement and manage. We characterized the application of the highly energized gas "noninvasive physical plasma" (NIPP) for tissue devitalization and the treatment of CIN. (2) Methods: We report the establishment of a promising tissue devitalization procedure by NIPP application. The procedure was characterized at the in vitro, ex vivo and in vivo levels. We performed the first prospective, single-armed phase-IIb trial in 20 CIN1/2 patients (NCT03218436). (3) Results: NIPP-treated cervical cancer cells used as dysplastic in vitro model exhibited significant cell growth retardation due to DNA damage, cell cycle arrest and apoptosis. Ex vivo and in vivo tissue assessments showed a highly noninvasive and tissue-preserving treatment procedure which induces transmucosal tissue devitalization. Twenty participants were treated with NIPP and attended a 24-week follow-up. Treatment success was achieved in 19 (95%) participants without postinterventional complications other than mild to moderate discomfort during application. (4) Conclusions: The results from this study preliminarily suggest that NIPP could be used for an effective and tissue-preserving treatment for CIN without the disadvantages of standard treatments. However, randomized controlled trials must confirm the efficacy and noninferiority of NIPP compared to standard treatments.

14.
ACS Appl Mater Interfaces ; 13(46): 55534-55549, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762399

RESUMO

A full understanding of the relationship between surface properties, protein adsorption, and immune responses is lacking but is of great interest for the design of biomaterials with desired biological profiles. In this study, polyelectrolyte multilayer (PEM) coatings with gradient changes in surface wettability were developed to shed light on how this impacts protein adsorption and immune response in the context of material biocompatibility. The analysis of immune responses by peripheral blood mononuclear cells to PEM coatings revealed an increased expression of proinflammatory cytokines tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1ß, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 and the surface marker CD86 in response to the most hydrophobic coating, whereas the most hydrophilic coating resulted in a comparatively mild immune response. These findings were subsequently confirmed in a cohort of 24 donors. Cytokines were produced predominantly by monocytes with a peak after 24 h. Experiments conducted in the absence of serum indicated a contributing role of the adsorbed protein layer in the observed immune response. Mass spectrometry analysis revealed distinct protein adsorption patterns, with more inflammation-related proteins (e.g., apolipoprotein A-II) present on the most hydrophobic PEM surface, while the most abundant protein on the hydrophilic PEM (apolipoprotein A-I) was related to anti-inflammatory roles. The pathway analysis revealed alterations in the mitogen-activated protein kinase (MAPK)-signaling pathway between the most hydrophilic and the most hydrophobic coating. The results show that the acute proinflammatory response to the more hydrophobic PEM surface is associated with the adsorption of inflammation-related proteins. Thus, this study provides insights into the interplay between material wettability, protein adsorption, and inflammatory response and may act as a basis for the rational design of biomaterials.


Assuntos
Anti-Inflamatórios/química , Materiais Revestidos Biocompatíveis/química , Citocinas/imunologia , Inflamação/imunologia , Polieletrólitos/química , Adsorção , Anti-Inflamatórios/farmacologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/análise , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Tamanho da Partícula , Polieletrólitos/farmacologia , Propriedades de Superfície , Molhabilidade
15.
Nat Immunol ; 22(1): 74-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32999467

RESUMO

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Reações Cruzadas/imunologia , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Memória Imunológica/imunologia , SARS-CoV-2/fisiologia , Linfócitos T/metabolismo , Vacinas Virais/administração & dosagem
16.
Mol Cancer Res ; 18(2): 278-286, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704732

RESUMO

Mechanisms of intrinsic resistance of serous ovarian cancers to standard treatment with carboplatin and paclitaxel are poorly understood. Seventeen primary serous ovarian cancers classified as responders or nonresponders to standard treatment were screened with DigiWest protein array analysis for 279 analytes. Histone methyl transferase EZH2, an interaction partner of ataxia telangiectasia mutated (ATM), was found as one of the most significantly represented proteins in responsive tumors. Survival analysis of 616 patients confirmed a better outcome in patients with high EZH2 expression, but a worse outcome in patients with low EZH2 and high-ATM-expressing tumors compared with patients with low EZH2 and low-ATM-expressing tumors. A proximity ligation assay further confirmed an association between ATM and EZH2 in tumors of patients with an increased disease-free survival. Knockdown of EZH2 resulted in treatment-resistant cells, but suppression of both EZH2 and ATM, or ATM alone, had no effect. DigiWest protein analysis of EZH2-knockdown cells revealed a decrease in proteins involved in mitotic processes and checkpoint regulation, suggesting that deregulated ATM may induce treatment resistance. IMPLICATIONS: Ovarian cancer is a malignancy with high mortality rates, with to date, no successful molecular characterization strategies. Our study uncovers in a comprehensive approach the involvement of checkpoint regulation via ATM and EZH2, potentially providing a new therapeutic perspective for further investigations.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carboplatina/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Idoso , Proteínas Mutadas de Ataxia Telangiectasia/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Dano ao DNA , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
17.
PLoS Genet ; 15(3): e1008076, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925167

RESUMO

Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel "sibling" 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genes erbB-1 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mutação , Organoides/metabolismo , Organoides/fisiologia , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Transdução de Sinais , Proteínas ras/genética
18.
Nat Methods ; 15(11): 909-912, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377371

RESUMO

Western blotting (WB) is widely used to test antibody specificity, but the assay has low throughput and precision. Here we used preparative gel electrophoresis to develop a capture format for WB. Fractions with soluble, size-separated proteins facilitated parallel readout with antibody arrays, shotgun mass spectrometry (MS) and immunoprecipitation followed by MS (IP-MS). This pipeline provided the means for large-scale implementation of antibody validation concepts proposed by an international working group on antibody validation (IWGAV).


Assuntos
Anticorpos/imunologia , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Proteínas de Neoplasias/imunologia , Neoplasias/metabolismo , Proteômica/métodos , Humanos , Imunoprecipitação , Espectrometria de Massas , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Células Tumorais Cultivadas
19.
Drug Metab Dispos ; 46(11): 1462-1465, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115646

RESUMO

Nuclear receptors mediate the hepatic induction of drug-metabolizing enzymes by xenobiotics. Not much is known about enzyme induction in liver tumors. Here, we treated tumor-bearing mice with phenobarbital, an activator of the constitutive androstane receptor (CAR), to analyze the response of chemically induced Ha-ras- and B-raf-mutated mouse liver adenoma to CAR activation in vivo. Both tumor subpopulations possess almost identical gene expression profiles. CAR target gene induction in the tumors was studied at the mRNA and protein levels, and a reverse-phase protein microarray approach was chosen to characterize important signaling cascades. CAR target gene induction was pronounced in B-raf-mutated but not in Ha-ras-mutated tumors. Phosphoproteomic profiling revealed that phosphorylation-activated extracellular signal-regulated kinase (ERK) 1/2 was more abundant in Ha-ras-mutated than in B-raf-mutated tumors. ERK activation in tumor tissue was negatively correlated with CAR target induction. ERK activation is known to inhibit CAR-dependent transcription. In summary, profound differences exist between the two closely related tumor subpopulations with respect to the activation of mitogenic signaling cascades, and these dissimilarities might explain the differences in xenobiotic induction of CAR target genes.


Assuntos
Carcinoma Hepatocelular/genética , Genes ras/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/genética , Animais , Receptor Constitutivo de Androstano , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação/efeitos dos fármacos , Fenobarbital/farmacologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
20.
Anal Chem ; 90(9): 5788-5794, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570278

RESUMO

Multitransmembrane proteins are notoriously difficult to analyze. To date, rapid, and cost-efficient detection methods are lacking and only mass spectrometry-based systems allow reliable quantification of these proteins. Here, we present a novel type of sandwich immunoassay that is capable of sensitively detecting multidrug resistance protein 1 (MDR1), a prototypic 12-transmembrane-domains transporter. In a first assay step, complex samples are enzymatically fragmented into peptides as routinely done for mass spectrometry. A proteotypic peptide derived from MDR1 was chosen and antibodies targeting this peptide were used to build a sandwich immunoassay. Validation of the optimized assay showed good sensitivity, reproducibility and it allowed reliable quantification of MDR1; cross-validation by mass spectrometry demonstrated the applicability for routine analyses in clinical and pharmaceutical research. MDR1 was quantified in primary human renal cell carcinoma and corresponding normal tissue and down-regulation or expression loss was found in tumor tissue corroborating its importance in drug resistance and efficacy.


Assuntos
Carcinoma de Células Renais/química , Imunoensaio , Neoplasias Renais/química , Peptídeos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/análise , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA