Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957122

RESUMO

It is difficult to imagine where the signaling community would be today without the Protein Data Bank. This visionary resource, established in the 1970s, has been an essential partner for sharing information between academics and industry for over 3 decades. We describe here the history of our journey with the protein kinases using cAMP-dependent protein kinase as a prototype. We summarize what we have learned since the first structure, published in 1991, why our journey is still ongoing, and why it has been essential to share our structural information. For regulation of kinase activity, we focus on the cAMP-binding protein kinase regulatory subunits. By exploring full-length macromolecular complexes, we discovered not only allostery but also an essential motif originally attributed to crystal packing. Massive genomic data on disease mutations allows us to now revisit crystal packing as a treasure chest of possible protein:protein interfaces where the biological significance and disease relevance can be validated. It provides a new window into exploring dynamic intrinsically disordered regions that previously were deleted, ignored, or attributed to crystal packing. Merging of crystallography with cryo-electron microscopy, cryo-electron tomography, NMR, and millisecond molecular dynamics simulations is opening a new world for the signaling community where those structure coordinates, deposited in the Protein Data Bank, are just a starting point!


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/história , Animais , Microscopia Crioeletrônica , História do Século XX , História do Século XXI , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
2.
Structure ; 20(1): 113-20, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22244760

RESUMO

Classical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search. The protocol was validated on three test cases: a simulated system of antibody structures; and two experimentally based test cases: Tobacco mosaic virus, a rod-shaped virus; and Aquaporin Z, a bacterial membrane protein. We have shown that AFM-intermediate resolution topography and partial surface data are useful constraints for building macromolecular assemblies. The protocol is applicable to multicomponent structures connected in the polypeptide chain or as disjoint molecules. The approach effectively increases the resolution of AFM beyond topographical information down to atomic-detail structures.


Assuntos
Biologia Computacional/métodos , Microscopia de Força Atômica/métodos , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas/química , Aquaporinas/química , Proteínas de Escherichia coli/química , Vírus do Mosaico do Tabaco/química
3.
PLoS Comput Biol ; 4(4): e1000056, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18404204

RESUMO

Cyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1) the phosphate binding cassette (PBC), which binds the cAMP ribose-phosphate, 2) the "hinge," a flexible helix, which contacts the PBC, 3) the beta(2,3) loop, which provides precise positioning of an invariant arginine from the PBC, and 4) a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif). The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the beta(2,3) loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP) represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.


Assuntos
AMP Cíclico/química , AMP Cíclico/genética , Modelos Químicos , Modelos Moleculares , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de Proteína/métodos , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Estrutura Terciária de Proteína
4.
Biochim Biophys Acta ; 1784(1): 238-43, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067871

RESUMO

Protein kinases are a large family of enzymes heavily involved in signal transduction, regulation of metabolism, and control of cell growth and differentiation. These functions require precise recognition of widely diverse signals and substrates, and very detailed control of protein kinase activity. Large molecules interact primarily through recognition of surface features. Comparison of surfaces is complicated by both sequence diversity and conformational variability, including multiple possible rotameric states of side chains. We used a recently developed method of protein surface comparison to compare different serine/threonine and tyrosine kinases. As we have shown, two hydrophobic cores inside a protein kinase molecule are connected by a unique formation, called the "spine". It exists only in the active conformation of protein kinases and is dynamically disassembled during the inactivation process. Detection of such structures by any other method was not possible as the residues which comprise the spine do not form any sequence or 3D motifs in a traditional sense.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/metabolismo , Algoritmos , Sítios de Ligação , AMP Cíclico/metabolismo , Ativação Enzimática , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo
5.
J Mol Biol ; 374(2): 487-99, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17942118

RESUMO

The two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIbeta isoform with the PKA catalytic (C) subunit were analyzed by amide H/(2)H exchange mass spectrometry to compare solvent accessibility of RIIbeta and the C subunit in their free and complexed states. Direct mapping of the RIIbeta-C interface revealed important differences between the intersubunit interfaces in the type I and type II holoenzyme complexes. These differences are seen in both the R-subunits as well as the C-subunit. Unlike the type I isoform, the type II isoform complexes require both cAMP-binding domains, and ATP is not obligatory for high affinity interactions with the C-subunit. Surprisingly, the C-subunit mediates distinct, overlapping surfaces of interaction with the two R-isoforms despite a strong homology in sequence and similarity in domain organization. Identification of a remote allosteric site on the C-subunit that is essential for interactions with RII, but not RI subunits, further highlights the considerable diversity in interfaces found in higher order protein complexes mediated by the C-subunit of PKA.


Assuntos
Amidas/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Deutério/química , Holoenzimas/química , Holoenzimas/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , AMP Cíclico/metabolismo , Medição da Troca de Deutério , Espectrometria de Massas , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ressonância de Plasmônio de Superfície
6.
Protein Sci ; 15(3): 583-601, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501228

RESUMO

A Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein. The mass of a peptide upon deuteration is a sum of the natural isotope abundance, fast exchanging side-chain hydrogens (present in MALDI-TOF H/2H data) and backbone amide exchange. Removal of the components of the isotopic distribution due to the natural isotope abundances and the fast exchanging side-chains allows for a precise quantification of the levels of backbone amide exchange, as is shown by an example from protein kinase A. The deconvoluted results are affected by overlapping peptides or inconsistent mass envelopes, and evaluation procedures for these cases are discussed. Finally, a method for determining the back exchange corrected populations is presented, and its effect on the data is discussed under various circumstances.


Assuntos
Medição da Troca de Deutério/métodos , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amidas/química , Aminoácidos/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Entropia , Análise de Fourier , Fragmentos de Peptídeos/química
7.
Protein Sci ; 14(11): 2871-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16253959

RESUMO

Glu230, one of the acidic residues that cluster around the active site of the catalytic subunit of cAMP-dependent protein kinase, plays an important role in substrate recognition. Specifically, its side chain forms a direct salt-bridge interaction with the substrate's P-2 Arg. Previous studies showed that mutation of Glu230 to Gln (E230Q) caused significant decreases not only in substrate binding but also in the rate of phosphoryl transfer. To better understand the importance of Glu230 for structure and function, we solved the crystal structure of the E230Q mutant at 2.8 A resolution. Surprisingly, the mutant preferred an open conformation with no bound ligands observed, even though the crystals were grown in the presence of MgATP and the inhibitor peptide, IP20. This is in contrast to the wild-type protein that, under the same conditions, prefers the closed conformation of a ternary complex. The structure highlights the importance of the electrostatic surface not only for substrate binding and catalysis, but also for the mechanism for closing the active site cleft. This surface mutation clearly disrupts the recognition and binding of substrate peptide so that the enzyme prefers an open conformation that cannot trap ATP. This is consistent with the reinforcing concepts of conformational dynamics and the synergistic binding of ATP and substrate peptide. Another unusual feature of the structure is the observation of the entire N terminus (Gly1-Thr32) assumes an extended alpha-helix conformation. Finally, based on temperature factors, this mutant structure is more stable than the wild-type C-subunit in the apo state.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Ácido Glutâmico/química , Modelos Moleculares , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Apoenzimas/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Glutâmico/genética , Glutamina/química , Glutamina/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína
8.
Proc Natl Acad Sci U S A ; 102(1): 45-50, 2005 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-15618393

RESUMO

cAMP-binding domains from several different proteins were analyzed to determine the properties and interactions of this recognition motif. Systematic computational analyses, including structure-based sequence comparison, surface matching, affinity grid analysis, and analyses of the ligand protein interactions were carried out. These analyses show distinctive roles of the sugar phosphate and the adenine in the cAMP-binding module. We propose that the cAMP-binding regulatory proteins function by providing an allosteric system in which the presence or absence of cAMP produces a substantial structural change through the loss of hydrophobic interactions with the adenine ring and consequent repositioning of the C helix. The modified positioning of the helix in turn is recognized by a protein-binding event, completing the allostery.


Assuntos
AMP Cíclico/metabolismo , Proteínas/química , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Bases de Dados de Proteínas , Dados de Sequência Molecular , Estrutura Terciária de Proteína/fisiologia , Proteínas/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
9.
Biochemistry ; 43(21): 6620-9, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15157095

RESUMO

Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Tionucleotídeos/química , Sítios de Ligação , Cristalografia por Raios X , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Estereoisomerismo , Tionucleotídeos/metabolismo
10.
J Mol Biol ; 336(2): 473-87, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14757059

RESUMO

The catalytic subunit of cAMP-dependent protein kinase has served as a paradigm for the entire kinase family. In the course of studying the structure-function relationship of the P+1 loop (Leu198-Leu205) of the kinase, we have solved the crystal structure of the Tyr204 to Ala mutant in complexes with Mg.ATP and an inhibitory peptide at 1.26A, with overall structure very similar to that of the wild-type protein. However, at the nucleotide binding site, ATP was found largely hydrolyzed, with the products ADP-PO(4) retained in the structure. High-resolution refinement suggests that 26% of the molecules contain the intact ATP, whereas 74% have the hydrolyzed products. The observation of the substrate and product states in the same structure adds significant information to our understanding of the phosphoryl transfer process. Structural examination of the mutation site substantiates and extends the emerging concept that the hydrophobic core in the large lobe of the kinase might serve as a stable platform for anchoring key segments involved in catalysis. We propose that Tyr204 is critical for anchoring the P+1 loop to the core. Further analysis has highlighted two major connections between the P+1 loop and the catalytic loop (Arg165-Asn171). One emphasizes the hydrophobic packing of Tyr204 and Leu167 mediated through residues from the alphaF-helix, recently recognized as a signal integration motif, which together with the alphaE-helix forms the center of the hydrophobic core network. The other connection is mediated by the hydrogen bond interaction between Thr201 and Asp166, in a substrate-dependent manner. We speculate that the latter interaction may be important for the kinase to sense the presence of substrate and prepare itself for the catalytic reaction. Thus, the P+1 loop is not merely involved in substrate binding; it mediates the communication between substrate and catalytic residues.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mutação/genética , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Treonina/genética , Treonina/metabolismo , Tirosina/genética , Tirosina/metabolismo
11.
Proc Natl Acad Sci U S A ; 100(23): 13264-9, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14583592

RESUMO

An important goal after structural genomics is to build up the structures of higher-order protein-protein complexes from structures of the individual subunits. Often structures of higher order complexes are difficult to obtain by crystallography. We have used an alternative approach in which the structures of the individual catalytic (C) subunit and RIalpha regulatory (R) subunit of PKA were first subjected to computational docking, and the top 100,000 solutions were subsequently filtered based on amide hydrogen/deuterium (H/2H) exchange interface protection data. The resulting set of filtered solutions forms an ensemble of structures in which, besides the inhibitor peptide binding site, a flat interface between the C-terminal lobe of the C-subunit and the A- and B-helices of RIalpha is uniquely identified. This holoenzyme structure satisfies all previous experimental data on the complex and allows prediction of new contacts between the two subunits.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Biophys Chem ; 105(2-3): 595-608, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14499921

RESUMO

An algorithm for comparison of homologous protein structures and for study of conformational changes in proteins, has been developed. The method is based on identification of pieces of the two molecules that have similar shapes, as determined by the local conformation of the polypeptide chain. Pieces that superpose within a specified tolerance are assembled into domains based on similar transformations for superposition. The result is sets of pieces that represent conserved structural elements and conserved spatial relationships between structural elements within the proteins being compared. A similarity criterion based on maximum distance rather than on root mean square deviation reduces bias by outliers. The utility of the method is demonstrated by using examples from the protein kinase family.


Assuntos
Sequência Conservada , Proteínas/química , Alinhamento de Sequência/métodos , Homologia Estrutural de Proteína , Algoritmos , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
J Mol Biol ; 327(1): 159-71, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12614615

RESUMO

To better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact. This "greasy" patch may lubricate the shearing motion associated with domain rotation, and the opening and closing of the active-site cleft. Although Apo appears to be quite dynamic, many important residues for MgATP binding and phosphoryl transfer in the active site are preformed. Residues around the adenine ring of ATP and residues involved in phosphoryl transfer from the large lobe are mostly preformed, whereas residues involved in ribose binding and in the Gly-rich loop are not. Prior to ligand binding, Lys72 and the C-terminal tail, two important ATP-binding elements are also disordered. The surface created in the active site is contoured to bind ATP, but not GTP, and appears to be held in place by a stable hydrophobic core, which includes helices C, E, and F, and beta strand 6. This core seems to provide a network for communicating from the active site, where nucleotide binds, to the peripheral peptide-binding F-to-G helix loop, exemplified by Phe239. Two potential lines of communication are the D helix and the F helix. The conserved Trp222-Phe238 network, which lies adjacent to the F-to-G helix loop, suggests that this network would exist in other protein kinases and may be a conserved means of communicating ATP binding from the active site to the distal peptide-binding ledge.


Assuntos
Apoenzimas/química , Apoenzimas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas , Ribose/metabolismo , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA