Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 30(11): 1570-1588.e7, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36309013

RESUMO

Upon pathogen detection, macrophages normally stay sessile in tissues while dendritic cells (DCs) migrate to secondary lymphoid tissues. The obligate intracellular protozoan Toxoplasma gondii exploits the trafficking of mononuclear phagocytes for dissemination via unclear mechanisms. We report that, upon T. gondii infection, macrophages initiate the expression of transcription factors normally attributed to DCs, upregulate CCR7 expression with a chemotactic response, and perform systemic migration when adoptively transferred into mice. We show that parasite effector GRA28, released by the MYR1 secretory pathway, cooperates with host chromatin remodelers in the host cell nucleus to drive the chemotactic migration of parasitized macrophages. During in vivo challenge studies, bone marrow-derived macrophages infected with wild-type T. gondii outcompeted those challenged with MYR1- or GRA28-deficient strains in migrating and reaching secondary organs. This work reveals how an intracellular parasite hijacks chemotaxis in phagocytes and highlights a remarkable migratory plasticity in differentiated cells of the mononuclear phagocyte system.


Assuntos
Parasitos , Toxoplasma , Camundongos , Animais , Toxoplasma/fisiologia , Células Dendríticas/fisiologia , Movimento Celular , Macrófagos
2.
Cell Mol Life Sci ; 78(12): 5197-5212, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34023934

RESUMO

Multiple cellular processes, such as immune responses and cancer cell metastasis, crucially depend on interconvertible migration modes. However, knowledge is scarce on how infectious agents impact the processes of cell adhesion and migration at restrictive biological barriers. In extracellular matrix, dendritic cells (DCs) infected by the obligate intracellular protozoan Toxoplasma gondii undergo mesenchymal-to-amoeboid transition (MAT) for rapid integrin-independent migration. Here, in a cellular model of the blood-brain barrier, we report that parasitised DCs adhere to polarised endothelium and shift to integrin-dependent motility, accompanied by elevated transendothelial migration (TEM). Upon contact with endothelium, parasitised DCs dramatically reduced velocities and adhered under both static and shear stress conditions, thereby obliterating the infection-induced amoeboid motility displayed in collagen matrix. The motility of adherent parasitised DCs on endothelial monolayers was restored by blockade of ß1 and ß2 integrins or ICAM-1, which conversely reduced motility on collagen-coated surfaces. Moreover, parasitised DCs exhibited enhanced translocation across highly polarised primary murine brain endothelial cell monolayers. Blockade of ß1, ß2 integrins, ICAM-1 and PECAM-1 reduced TEM frequencies. Finally, gene silencing of the pan-integrin-cytoskeleton linker talin (Tln1) or of ß1 integrin (Itgb1) in primary DCs resulted in increased motility on endothelium and decreased TEM. Adding to the paradigms of leukocyte diapedesis, the findings provide novel insights in how an intracellular pathogen impacts the migratory plasticity of leukocytes in response to the cellular environment, to promote infection-related dissemination.


Assuntos
Barreira Hematoencefálica/parasitologia , Movimento Celular , Células Dendríticas/parasitologia , Endotélio Vascular/parasitologia , Integrinas/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Adesão Celular , Células Dendríticas/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Feminino , Interações Hospedeiro-Parasita , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/patologia
3.
J Cell Sci ; 134(5)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32161101

RESUMO

Ras-Erk MAPK signaling controls many of the principal pathways involved in metazoan cell motility, drives metastasis of multiple cancer types and is targeted in chemotherapy. However, its putative roles in immune cell functions or in infections have remained elusive. Here, using primary dendritic cells (DCs) in an infection model with the protozoan Toxoplasma gondii, we show that two pathways activated by infection converge on Ras-Erk MAPK signaling to promote migration of parasitized DCs. We report that signaling through the receptor tyrosine kinase Met (also known as HGF receptor) contributes to T. gondii-induced DC hypermotility. Furthermore, voltage-gated Ca2+ channel (VGCC, subtype CaV1.3) signaling impacted the migratory activation of DCs via calmodulin-calmodulin kinase II. We show that convergent VGCC signaling and Met signaling activate the GTPase Ras to drive Erk1 and Erk2 (also known as MAPK3 and MAPK1, respectively) phosphorylation and hypermotility of T. gondii-infected DCs. The data provide a molecular basis for the hypermigratory mesenchymal-to-amoeboid transition (MAT) of parasitized DCs. This emerging concept suggests that parasitized DCs acquire metastasis-like migratory properties that promote infection-related dissemination.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Movimento Celular , Células Dendríticas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA