Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Metabolism ; 115: 154460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285180

RESUMO

BACKGROUND: Reproduction is tightly coupled to body energy and metabolic status. GnRH neurons, master elements and final output pathway for the brain control of reproduction, directly or indirectly receive and integrate multiple metabolic cues to regulate reproductive function. Yet, the molecular underpinnings of such phenomenon remain largely unfolded. AMP-activated protein kinase (AMPK), the fundamental cellular sensor that becomes activated in conditions of energy deficit, has been recently shown to participate in the control of Kiss1 neurons, essential gatekeepers of the reproductive axis, by driving an inhibitory valence in situations of energy scarcity at puberty. However, the contribution of AMPK signaling specifically in GnRH neurons to the metabolic control of reproduction remains unknown. METHODS: Double immunohistochemistry (IHC) was applied to evaluate expression of active (phosphorylated) AMPK in GnRH neurons and a novel mouse line, named GAMKO, with conditional ablation of the AMPK α1 subunit in GnRH neurons, was generated. GAMKO mice of both sexes were subjected to reproductive characterization, with attention to puberty and gonadotropic responses to kisspeptin and metabolic stress. RESULTS: A vast majority (>95%) of GnRH neurons co-expressed pAMPK. Female (but not male) GAMKO mice displayed earlier puberty onset and exaggerated LH (as surrogate marker of GnRH) responses to kisspeptin-10 at the prepubertal age. In adulthood, GAMKO females retained increased LH responsiveness to kisspeptin and showed partial resilience to the inhibitory effects of conditions of negative energy balance on the gonadotropic axis. The modulatory role of AMPK in GnRH neurons required preserved ovarian function, since the differences in LH pulsatility detected between GAMKO and control mice subjected to fasting were abolished in ovariectomized animals. CONCLUSIONS: Altogether, our data document a sex-biased, physiological role of AMPK signaling in GnRH neurons, as molecular conduit of the inhibitory actions of conditions of energy deficit on the female reproductive axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Reprodução/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Ciclo Estral/metabolismo , Feminino , Kisspeptinas/farmacologia , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fosforilação , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
Hum Reprod ; 34(12): 2495-2512, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31820802

RESUMO

STUDY QUESTION: Can kisspeptin treatment induce gonadotrophin responses and ovulation in preclinical models and anovulatory women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER: Kisspeptin administration in some anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. WHAT IS KNOWN ALREADY: PCOS is a prevalent, heterogeneous endocrine disorder, characterized by ovulatory dysfunction, hyperandrogenism and deregulated gonadotrophin secretion, in need of improved therapeutic options. Kisspeptins (encoded by Kiss1) are master regulators of the reproductive axis, acting mainly at GnRH neurons, with kisspeptins being an essential drive for gonadotrophin-driven ovarian follicular maturation and ovulation. Altered Kiss1 expression has been found in rodent models of PCOS, although the eventual pathophysiological role of kisspeptins in PCOS remains unknown. STUDY DESIGN, SIZE, DURATION: Gonadotrophin and ovarian/ovulatory responses to kisspeptin-54 (KP-54) were evaluated in three preclinical models of PCOS, generated by androgen exposures at different developmental windows, and a pilot exploratory cohort of anovulatory women with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS: Three models of PCOS were generated by exposure of female rats to androgens at different periods of development: PNA (prenatal androgenization; N = 20), NeNA (neonatal androgenization; N = 20) and PWA (post-weaning androgenization; N = 20). At adulthood (postnatal day 100), rats were subjected to daily treatments with a bolus of KP-54 (100 µg/kg, s.c.) or vehicle for 11 days (N = 10 per model and treatment). On Days 1, 4, 7 and 11, LH and FSH responses were assessed at different time-points within 4 h after KP-54 injection, while ovarian responses, in terms of follicular maturation and ovulation, were measured at the end of the treatment. In addition, hormonal (gonadotrophin, estrogen and inhibin B) and ovulatory responses to repeated KP-54 administration, at doses of 6.4-12.8 nmol/kg, s.c. bd for 21 days, were evaluated in a pilot cohort of anovulatory women (N = 12) diagnosed with PCOS, according to the Rotterdam criteria. MAIN RESULTS AND THE ROLE OF CHANCE: Deregulated reproductive indices were detected in all PCOS models: PNA, NeNA and PWA. Yet, anovulation was observed only in NeNA and PWA rats. However, while anovulatory NeNA rats displayed significant LH and FSH responses to KP-54 (P < 0.05), which rescued ovulation, PWA rats showed blunted LH secretion after repeated KP-54 injection and failed to ovulate. In women with PCOS, KP-54 resulted in a small rise in LH (P < 0.05), with an equivalent elevation in serum estradiol levels (P < 0.05). Two women showed growth of a dominant follicle with subsequent ovulation, one woman displayed follicle growth but not ovulation and desensitization was observed in another patient. No follicular response was detected in the other women. LIMITATIONS, REASONS FOR CAUTION: While three different preclinical PCOS models were used in order to capture the heterogeneity of clinical presentations of the syndrome, it must be noted that rat models recapitulate many but not all the features of this condition. Additionally, our pilot study was intended as proof of principle, and the number of participants is low, but the convergent findings in preclinical and clinical studies reinforce the validity of our conclusions. WIDER IMPLICATIONS OF THE FINDINGS: Our first-in-rodent and -human studies demonstrate that KP-54 administration in anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. As our rat models likely reflect the diversity of PCOS phenotypes, our results argue for the need of personalized management of anovulatory dysfunction in women with PCOS, some of whom may benefit from kisspeptin-based treatments. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by research agreements between Ferring Research Institute and the Universities of Cordoba and Edinburgh. K.S. was supported by the Wellcome Trust Scottish Translational Medicine and Therapeutics Initiative (STMTI). Some of this work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. M.T.-S. is a member of CIBER Fisiopatología de la Obesidad y Nutrición, which is an initiative of Instituto de Salud Carlos III. Dr Mannaerts is an employee of Ferring International PharmaScience Center (Copenhagen, Denmark), and Drs Qi, van Duin and Kohout are employees of the Ferring Research Institute (San Diego, USA). Dr Anderson and Dr Tena-Sempere were recipients of a grant support from the Ferring Research Institute, and Dr Anderson has undertaken consultancy work and received speaker fees outside this study from Merck, IBSA, Roche Diagnostics, NeRRe Therapeutics and Sojournix Inc. Dr Skorupskaite was supported by the Wellcome Trust through the Scottish Translational Medicine and Therapeutics Initiative 102419/Z/13/A. The other authors have no competing interest.


Assuntos
Kisspeptinas/uso terapêutico , Ovulação/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Adulto , Animais , Modelos Animais de Doenças , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Kisspeptinas/farmacologia , Hormônio Luteinizante/sangue , Projetos Piloto , Síndrome do Ovário Policístico/sangue , Ratos Wistar , Adulto Jovem
3.
Nat Commun ; 9(1): 4194, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305620

RESUMO

Puberty is regulated by epigenetic mechanisms and is highly sensitive to metabolic and nutritional cues. However, the epigenetic pathways mediating the effects of nutrition and obesity on pubertal timing are unknown. Here, we identify Sirtuin 1 (SIRT1), a fuel-sensing deacetylase, as a molecule that restrains female puberty via epigenetic repression of the puberty-activating gene, Kiss1. SIRT1 is expressed in hypothalamic Kiss1 neurons and suppresses Kiss1 expression. SIRT1 interacts with the Polycomb silencing complex to decrease Kiss1 promoter activity. As puberty approaches, SIRT1 is evicted from the Kiss1 promoter facilitating a repressive-to-permissive switch in chromatin landscape. Early-onset overnutrition accelerates these changes, enhances Kiss1 expression and advances puberty. In contrast, undernutrition raises SIRT1 levels, protracts Kiss1 repression and delays puberty. This delay is mimicked by central pharmacological activation of SIRT1 or SIRT1 overexpression, achieved via transgenesis or virogenetic targeting to the ARC. Our results identify SIRT1-mediated inhibition of Kiss1 as key epigenetic mechanism by which nutritional cues and obesity influence mammalian puberty.


Assuntos
Epigênese Genética , Kisspeptinas/genética , Fenômenos Fisiológicos da Nutrição , Obesidade/metabolismo , Maturidade Sexual , Sirtuína 1/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatina/metabolismo , Feminino , Histonas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Estado Nutricional , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Fatores de Tempo
4.
Hum Reprod ; 33(4): 680-689, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401296

RESUMO

STUDY QUESTION: Is keratin 8/18 (K8/K18) expression linked to cell death/survival events in the human granulosa cell lineage? SUMMARY ANSWER: A close association exists between changes in K8/K18 expression and cell death/survival events along the human granulosa cell lineage lifespan. WHAT IS KNOWN ALREADY: In addition to their structural and mechanical functions, K8/K18 play essential roles regulating cell death, survival and differentiation in several non-gonadal epithelial tissues. Transfection of the granulosa-like tumor KGN cells with siRNA to interfere KRT8 and KRT18 expression increases FAS-mediated apoptosis, while an inverse association between K8/K18 expression and cell death has been found in the bovine antral follicles and corpus luteum. Yet, only fragmentary and inconclusive information exists regarding K8/K18 expression in the human ovary. STUDY DESIGN, SIZE, DURATION: Expression of K8/K18 was assessed by immunohistochemistry at different stages of the granulosa cell lineage, from flattened granulosa cells in primordial follicles to fully luteinized granulosa-lutein cells in the corpus luteum (including corpus luteum of pregnancy). PARTICIPANTS/MATERIALS, SETTING, METHODS: Immunohistochemical detection of K8/K18 was conducted in 40 archival ovarian samples from women aged 17-39 years. K8/K18 expression was analyzed at the different stages of follicle development and corpus luteum lifespan. The proportions of primordial follicles showing all K8/K18-positive, all K8/K18 negative, or a mixture of K8/K18 negative and positive granulosa cells were quantified in 18 ovaries, divided into three age groups: ≤ 25 years (N = 6), 26-30 (N = 6) and 31-36 (N = 6) years. A total number of 1793 primordial, 750 transitional and 140 primary follicles were scored. MAIN RESULTS AND THE ROLE OF CHANCE: A close association was found between changes in K8/K18 expression and cell death/cell survival events in the human granulosa cell lineage. Large secondary and early antral follicles (most of them undergoing atresia) and regressing corpora lutea displayed low/absent K8/K18 expression. Conversely, early growing and some large antral follicles, functional menstrual corpora lutea, as well as life-extended corpus luteum of pregnancy, in which cell death was scarce, showed high K8/K18 expression. Three sub-populations of primordial follicles were observed with respect to the presence of K8/K18 in their flattened granulosa cells, ranging from primordial follicles showing only positive granulosa cells [P0(+)], to others with a mixture of positive and negative cells [P0(+/-)] or follicles with only negative cells [P0(-)]. Significant age-related changes were found in the proportions of the different primordial follicle types. In relation to age, a positive correlation was found for P0(+) primordial follicles (R2= 0.7883, N = 18; P < 0.001), while negative correlations were found for P0(+/-) (R2 = 0.6853, N = 18; P < 0.001) and P0(-) (R2 = 0.6725, N = 18; P < 0.001) follicles. Furthermore, an age-related shift towards greater keratin expression was found in P0(+/-) follicles (χ2 = 19.07, P < 0.05). LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: This is a descriptive study. Hence, a cause-and-effect relationship between K8/K18 expression and cell death/survival cannot be directly established. WIDER IMPLICATIONS OF THE FINDINGS: This study describes, for the first time, the existence of sub-populations of primordial follicles on the basis of K8/K18 expression in granulosa cells, and that their proportions change with age. While a progressive increase in K8/K18 expression cannot be ruled out, our data are consistent with the hypothesis that primordial follicles expressing low levels of K8/K18 are preferentially ablated by follicle attrition, while primordial follicles showing high K8/K18 levels are those predominantly recruited into the growing pool. This suggests that K8/K18 expression could constitute a novel factor regulating primordial follicle death/survival, and raises the possibility that alterations of K8/K18 expression could be involved in the accelerated depletion of the ovarian reserve leading to premature ovarian insufficiency. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Grants BFU2011-025021 and BFU2014-57581-P (Ministerio de Economía y Competitividad, Spain; co-funded with EU funds from FEDER Program); project PIE14-00005 (Flexi-Met, Instituto de Salud Carlos III, Ministerio de Sanidad, Spain); Projects P08-CVI-03788 and P12-FQM-01943 (Junta de Andalucía, Spain); and EU research contract DEER FP7-ENV-2007-1. CIBER Fisiopatología de la Obesidad y Nutrición is an initiative of Instituto de Salud Carlos III. The authors have nothing to disclose in relation to the contents of this study.


Assuntos
Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Células da Granulosa/metabolismo , Queratina-18/metabolismo , Queratina-8/metabolismo , Reserva Ovariana/fisiologia , Adolescente , Adulto , Linhagem da Célula/fisiologia , Corpo Lúteo/metabolismo , Feminino , Humanos , Queratina-18/genética , Queratina-8/genética , Adulto Jovem
5.
Endocrinology ; 156(2): 576-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490143

RESUMO

Kisspeptin/neurokinin B/dynorphin (KNDy) neurons, which coexpress kisspeptins (Kps), neurokinin B (NKB), and dynorphin (Dyn), regulate gonadotropin secretion. The KNDy model proposes that NKB (a stimulator, through NK3R) and Dyn (an inhibitor, through κ-opioid receptor) shape Kp secretion onto GnRH neurons. However, some aspects of this paradigm remain ill defined. Here we aimed to characterize the following: 1) the effects of NKB signaling on FSH secretion and 2) the role of Dyn in gonadotropin secretion after NK3R activation; 3) additionally, we explored the roles of other tachykinin receptors, NK1R and NK2R, on gonadotropin release. Thus, the effects of the NK3R agonist, senktide, on FSH release were explored across postnatal development in male and female rats; gonadotropin responses to agonists of NK1R substance P and NK2R [neurokinin A (NKA)] were also monitored. Moreover, the effects of senktide on gonadotropin secretion were assessed after antagonizing Dyn actions by nor-binaltorphimine didydrochloride. Before puberty, rats of both sexes showed increased FSH secretion to senktide (and Kp-10). Conversely, adult female rats were irresponsive to senktide in terms of FSH, despite proven LH responses, whereas the adult males did not display FSH or LH responses to senktide, even at high doses. In turn, substance P and NKA stimulated gonadotropin secretion in prepubertal rats, whereas in adults modest gonadotropin responses to NKA were detected. By pretreatment with a Dyn antagonist, adult males became responsive to senktide in terms of LH secretion and displayed elevated basal LH and FSH levels; nor-binaltorphimine didydrochloride treatment uncovered FSH responses to senktide in adult females. Furthermore, the expression of Pdyn and Opkr1 (encoding Dyn and κ-opioid receptor, respectively) in the mediobasal hypothalamus was greater in males than in females at prepubertal ages. Overall, our data contribute to refining our understanding on how the elements of the KNDy node and related factors (ie, other tachykinins) differentially participate in the control of gonadotropins at different stages of rat postnatal maturation.


Assuntos
Envelhecimento/metabolismo , Hormônio Foliculoestimulante/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/metabolismo , Animais , Dinorfinas/antagonistas & inibidores , Dinorfinas/metabolismo , Encefalinas/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Neurocinina B/agonistas , Fragmentos de Peptídeos , Precursores de Proteínas/metabolismo , Ratos Wistar , Receptores da Neurocinina-1/agonistas , Receptores da Neurocinina-2/agonistas , Substância P/análogos & derivados
6.
Hum Reprod ; 29(12): 2736-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25316443

RESUMO

STUDY QUESTION: Are neurokinin B (NKB), NK3 receptor (NK3R), kisspeptin (KISS1) and kisspeptin receptor (KISS1R) expressed in human ovarian granulosa cells? SUMMARY ANSWER: The NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and functionally active in ovarian granulosa cells. WHAT IS KNOWN ALREADY: The NKB/NK3R and KISS1/KISS1R systems are essential for reproduction. In addition to their well-recognized role in hypothalamic neurons, these peptide systems may contribute to the control of fertility by acting directly on the gonads, but such a direct gonadal role remains largely unknown. STUDY DESIGN, SIZE, DURATION: This study analyzed matched mural granulosa cells (MGCs) and cumulus cells (CCs) collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS: The samples were provided by 56 oocyte donor women undergoing ovarian stimulation treatment. Follicular fluid samples containing MGCs and cumulus-oocyte complexes were collected after transvaginal ultrasound-guided oocyte retrieval. RT-PCR, quantitative real-time PCR, immunocytochemistry and western blot were used to investigate the pattern of expression of the NKB/NK3R and KISS/KISS1R systems in MGCs and CCs. Intracellular free Ca(2+) levels, [Ca(2+)]i, in MGCs after exposure to NKB or KISS1, in the presence or not of tachykinin receptor antagonists, were also measured. MAIN OUTCOME AND THE ROLE OF CHANCE: NKB/NK3R and KISS1/KISS1R systems were expressed, at the mRNA and protein levels, in MGCs and CCs, with significantly higher expression in CCs. Kisspeptin increased the [Ca(2+)]i in the cytosol of human MGCs while exposure to NKB failed to induce any change in [Ca(2+)]i. However, the [Ca(2+)]i response to kisspeptin was reduced in the presence of NKB. The inhibitory effect of NKB was only partially mimicked by the NK3R agonist, senktide and marginally suppressed by the NK3R-selective antagonist SB 222200. Yet, a cocktail of antagonists selective for the NK1, NK2 and NK3 receptors blocked the effect of NKB. LIMITATIONS, REASONS FOR CAUTION: The granulosa and cumulus cells were obtained from oocyte donors undergoing ovarian stimulation, which in comparison with natural cycles, may have affected gene and protein expression in granulosa cells. WIDER IMPLICATIONS OF THE FINDINGS: Our data demonstrate that, in addition to their indispensable effects at the central nervous system, the NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and are functionally active in non-neuronal reproductive cells of the female gonads, the ovarian granulosa cells. STUDY FUNDING/ COMPETING INTERESTS: This work was supported by grants from Ministerio de Economía y Competitividad (CTQ2011-25564 and BFI2011-25021) and Junta de Andalucía (P08-CVI-04185), Spain. J.G.-O., F.M.P., M.F.-S., N.P., A.C.-R., T.A.A., M.H., M.R., M.T.-S. and L.C. have nothing to declare.


Assuntos
Células da Granulosa/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Receptores de Taquicininas/metabolismo , Células Cultivadas , Feminino , Humanos , Kisspeptinas/genética , Neurocinina B/genética , RNA Mensageiro/metabolismo , Receptores de Taquicininas/genética
7.
Curr Mol Med ; 14(1): 3-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24236459

RESUMO

Optimal cellular function and therefore organism's survival is determined by the sensitive and accurate convergence of energy and nutrient abundance to cell growth and division. Among other factors, this integration is coupled by the target of rapamycin (TOR) pathway, which is able to sense nutrient, energy and oxygen availability and also growth factor signaling. Indeed, TOR signaling regulates cell energy homeostasis by coordinating anabolic and catabolic processes for survival. TOR, named mTOR in mammals, is a conserved serine/threonine kinase that exists in two different complexes, mTORC1 and mTORC2. Recently, studies are suggesting that alterations of those complexes promote disease and disrupted phenotypes, such as aging, obesity and related disorders and even cancer. The evidences linking mTOR to energy and metabolic homeostasis included the following. At central level mTOR regulates food intake and body weight being involved in the mechanism by which signals such as leptin and ghrelin exert its effects. At peripheral level it influences adipogenesis and lipogenesis in different tissues including the liver. Noteworthy chronic nutritional activation of mTOR signaling has been implicated in the development of beta cell mass expansion and on insulin resistance. Understanding of mTOR and other molecular switches, such as AMP-activated protein kinase (AMPK), as well as their interrelationship is crucial to know how organisms maintain optimal homeostasis. This review summarizes the role of hypothalamic TOR complex in cellular energy sensing, evidenced in the last years, focusing on the metabolic pathways where it is involved and the importance of this metabolic sensor in cellular and whole body energy management. Understanding the exact role of hypothalamic mTOR may provide new cues for therapeutic intervention in diseases.


Assuntos
Hipotálamo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Metabolismo Energético , Hormônios/metabolismo , Hormônios/farmacologia , Humanos , Hipotálamo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Puberdade/genética , Puberdade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
8.
Endocrinology ; 154(2): 942-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23291449

RESUMO

Lin28 and Lin28b are related RNA-binding proteins that inhibit the maturation of miRNAs of the let-7 family and participate in the control of cellular stemness and early embryonic development. Considerable interest has arisen recently concerning other physiological roles of the Lin28/let-7 axis, including its potential involvement in the control of puberty, as suggested by genome-wide association studies and functional genomics. We report herein the expression profiles of Lin28 and let-7 members in the rat hypothalamus during postnatal maturation and in selected models of altered puberty. The expression patterns of c-Myc (upstream positive regulator of Lin28), mir-145 (negative regulator of c-Myc), and mir-132 and mir-9 (putative miRNA repressors of Lin28, predicted by bioinformatic algorithms) were also explored. In male and female rats, Lin28, Lin28b, and c-Myc mRNAs displayed very high hypothalamic expression during the neonatal period, markedly decreased during the infantile-to-juvenile transition and reached minimal levels before/around puberty. A similar puberty-related decline was observed for Lin28b in monkey hypothalamus but not in the rat cortex, suggesting species conservation and tissue specificity. Conversely, let-7a, let-7b, mir-132, and mir-145, but not mir-9, showed opposite expression profiles. Perturbation of brain sex differentiation and puberty, by neonatal treatment with estrogen or androgen, altered the expression ratios of Lin28/let-7 at the time of puberty. Changes in the c-Myc/Lin28b/let-7 pathway were also detected in models of delayed puberty linked to early photoperiod manipulation and, to a lesser extent, postnatal underfeeding or chronic subnutrition. Altogether, our data are the first to document dramatic changes in the expression of the Lin28/let-7 axis in the rat hypothalamus during the postnatal maturation and after different manipulations that disturb puberty, thus suggesting the potential involvement of developmental changes in hypothalamic Lin28/let-7 expression in the mechanisms permitting/leading to puberty onset.


Assuntos
Envelhecimento/genética , Encéfalo/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/biossíntese , Animais , Células-Tronco Embrionárias/citologia , Feminino , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , Puberdade/efeitos dos fármacos , Ratos , Ratos Wistar , Distribuição Tecidual
9.
Endocrinology ; 153(10): 4818-29, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22822161

RESUMO

Neurokinin B (NKB), encoded by Tac2 in rodents, and its receptor, NK3R, have recently emerged as important regulators of reproduction; NKB has been proposed to stimulate kisspeptin output onto GnRH neurons. Accordingly, NKB has been shown to induce gonadotropin release in several species; yet, null or even inhibitory effects of NKB have been also reported. The basis for these discrepant findings, as well as other key aspects of NKB function, remains unknown. We report here that in the rat, LH responses to the NK3R agonist, senktide, display a salient sexual dimorphism, with persistent stimulation in females, regardless of the stage of postnatal development, and lack of LH responses in males from puberty onward. Such dimorphism was independent of the predominant sex steroid after puberty, because testosterone administration to adult females failed to prevent LH responses to senktide, and LH responsiveness was not restored in adult males treated with estradiol or the nonaromatizable androgen, dihydrotestosterone. Yet, removal of sex steroids by gonadectomy switched senktide effects to inhibitory, both in adult male and female rats. Sexual dimorphism was also evident in the numbers of NKB-positive neurons in the arcuate nucleus (ARC), which were higher in adult female rats. This is likely the result of differences in sex steroid milieu during early periods of brain differentiation, because neonatal exposures to high doses of estrogen decreased ARC NKB neurons at later developmental stages. Likewise, neonatal estrogenization resulted in lower serum LH levels that were normalized by senktide administration. Finally, we document that the ability of estrogen to inhibit hypothalamic Tac2 expression seems region specific, because estrogen administration decreased Tac2 levels in the ARC but increased them in the lateral hypothalamus. Altogether, our data provide a deeper insight into relevant aspects of NKB function as major regulator of the gonadotropic axis in the rat, including maturational changes, sexual dimorphism, and differential regulation by sex steroids.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Neurocinina B/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores da Neurocinina-3/metabolismo , Maturidade Sexual/fisiologia , Substância P/análogos & derivados , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Estradiol/metabolismo , Estradiol/farmacologia , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-3/agonistas , Caracteres Sexuais , Fatores Sexuais , Maturidade Sexual/efeitos dos fármacos , Substância P/farmacologia , Testosterona/metabolismo , Testosterona/farmacologia
10.
Hum Reprod Update ; 18(5): 568-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22709979

RESUMO

BACKGROUND: The functional reproductive alterations seen in women with type 1 diabetes (T1D) have changed as therapy has improved. Historically, patients with T1D and insufficient metabolic control exhibited a high prevalence of amenorrhea, hypogonadism and infertility. This paper reviews the impact of diabetes on the reproductive axis of female T1D patients treated with modern insulin therapy, with special attention to the mechanisms by which diabetes disrupts hypothalamic-pituitary-ovarian function, as documented mainly by animal model studies. METHODS: A comprehensive MEDLINE search of articles published from 1966 to 2012 was performed. Animal model studies on experimental diabetes and human studies on T1D were examined and cross-referenced with terms that referred to different aspects of the gonadotropic axis, gonadotrophins and gonadal steroids. RESULTS: Recent studies have shown that women with T1D still display delayed puberty and menarche, menstrual irregularities (especially oligomenorrhoea), mild hyperandrogenism, polycystic ovarian syndrome, fewer live born children and possibly earlier menopause. Animal models have helped us to decipher the underlying basis of these conditions and have highlighted the variable contributions of defective leptin, insulin and kisspeptin signalling to the mechanisms of perturbed reproduction in T1D. CONCLUSIONS: Despite improvements in insulin therapy, T1D patients still suffer many reproductive problems that warrant specific diagnoses and therapeutic management. Similar to other states of metabolic stress, T1D represents a challenge to the correct functioning of the reproductive axis.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Reprodução , Amenorreia/etiologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Humanos , Hiperandrogenismo/etiologia , Hipogonadismo/etiologia , Insulina/uso terapêutico , Menarca , Distúrbios Menstruais/etiologia , Oligomenorreia/etiologia , Síndrome do Ovário Policístico/etiologia , Gravidez , Puberdade Tardia/etiologia
11.
Int J Androl ; 35(1): 63-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21651574

RESUMO

Kisspeptin, the product of the KISS1 gene, plays an essential role in the regulation of spermatogenesis acting primarily at the hypothalamic level of the gonadotropic axis. However, the presence of kisspeptin and its canonical receptor, KISS1R, in spermatozoa has not been explored nor the direct effects of kisspeptin on sperm function have been studied so far. In the present study, we analysed the expression of kisspeptin and its receptor in sperm cells by western blot and immunocytochemistry assays and evaluated the effects of exposure to kisspeptin on sperm intracellular Ca(2+) concentration, [Ca(2+)]i, sperm motility, sperm hyperactivation and the acrosome reaction. Changes in [Ca(2+)]i were monitored using Fura-2, sperm kinematic parameters were measured using computer-assisted sperm analysis (CASA), and the acrosome reaction was measured using fluorescein isothiocyanate-coupled Pisum sativum agglutinin lectin (FITC-PSA method). We found that kisspeptin and its receptor are present in sperm cells, where both are mainly localized in the sperm head, around the neck and in the flagellum midpiece. Exposure to kisspeptin caused a slow, progressive increase in [Ca(2+)]i, which reached a plateau about 3-6 min after kisspeptin exposure. In addition, kisspeptin modulated sperm progressive motility causing a biphasic (stimulatory and inhibitory) response and also induced transient sperm hyperactivation. The effects of kisspeptin on sperm motility and hyperactivation were inhibited by the antagonist of KISS1R, peptide 234. Kisspeptin did not induce the acrosome reaction in human spermatozoa. These data show for the first time that kisspeptin and its receptor are present in human spermatozoa and modulate key parameters of sperm function. This may represent an additional mechanism for their crucial function in the control of male fertility.


Assuntos
Kisspeptinas/metabolismo , Espermatozoides/metabolismo , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem
12.
J Neuroendocrinol ; 24(1): 22-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21951227

RESUMO

Kisspeptins, encoded by the Kiss1 gene, and their canonical receptor, GPR54 (also termed Kiss1R), are unanimously recognised as essential regulators of puberty onset and gonadotrophin secretion. These key reproductive functions stem from the capacity of kisspeptins to stimulate gonadotrophin-releasing hormone (GnRH) secretion in the hypothalamus, where discrete populations of Kiss1 neurones have been identified. In rodents, two major groups of hypothalamic Kiss1 neurones exist: one present in the arcuate nucleus (ARC) and the other located in the anteroventral periventricular area (AVPV/RP3V). In recent years, numerous signals have been identified as putative modulators of the hypothalamic Kiss1 system. Among them, the prominent role of sex steroids as being important regulators of Kiss1 neurones has been documented in different species and developmental stages, such as early brain sex differentiation, puberty, adulthood and senescence. These regulatory actions are (mainly) conducted via oestrogen receptor (ER)α, which is expressed in almost all Kiss1 neurones, and likely involve both classical and nonclassical pathways. The regulatory effects of sex steroids are nucleus-specific. Thus, sex steroids inhibit the expression of Kiss1/kisspeptin at the ARC, as a mechanism to conduct their negative-feedback actions on gonadotrophin secretion. By contrast, oestrogens enhance Kiss1 expression at the AVPV/RP3V in rodents, suggesting the involvement of this population in the positive-feedback actions of oestradiol to generate the preovulatory surge of gonadotrophins. In addition, sex steroids have been shown to act post-transcriptionally, modulating GnRH/gonadotrophin responsiveness to kisspeptin. Finally, sex steroids also regulate the expression of co-transmitters of Kiss1 neurones, such as neurokinin B, whose mRNA content in the ARC fluctuates in parallel to that of Kiss1 in response to changes in the circulating levels of sex steroids, therefore suggesting the contribution of this neuropeptide in the feedback control of gonadotrophin secretion. In sum, compelling experimental evidence obtained in different mammalian (and non-mammalian) species, including primates, demonstrates that sex steroids are essential regulators of hypothalamic Kiss1 neurones, which in turn operate as conduits for their effects on GnRH neurones. The physiological relevance of such regulatory phenomena is thoroughly discussed.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovulação/metabolismo , Puberdade/metabolismo , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Humanos
13.
Endocrinology ; 152(11): 4265-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21914775

RESUMO

Kisspeptin (Kiss1) and neurokinin B (NKB) (encoded by the Kiss1 and Tac2 genes, respectively) are indispensable for reproduction. In the female of many species, Kiss1 neurons in the arcuate nucleus (ARC) coexpress dynorphin A and NKB. Such cells have been termed Kiss1/NKB/Dynorphin (KNDy) neurons, which are thought to mediate the negative feedback regulation of GnRH/LH secretion by 17ß-estradiol. However, we have less knowledge about the molecular physiology and regulation of Kiss1/Kiss1-expressing neurons in the ARC of the male. Our work focused on the adult male mouse, where we sought evidence for coexpression of these neuropeptides in cells in the ARC, assessed the role of Kiss1 neurons in negative feedback regulation of GnRH/LH secretion by testosterone (T), and investigated the action of NKB on KNDy and GnRH neurons. Results showed that 1) the mRNA encoding Kiss1, NKB, and dynorphin are coexpressed in neurons located in the ARC; 2) Kiss1 and dynorphin A mRNA are regulated by T through estrogen and androgen receptor-dependent pathways; 3) senktide, an agonist for the NKB receptor (neurokinin 3 receptor, encoded by Tacr3), stimulates gonadotropin secretion; 4) KNDy neurons express Tacr3, whereas GnRH neurons do not; and 5) senktide activates KNDy neurons but has no discernable effect on GnRH neurons. These observations corroborate the putative role for KNDy neurons in mediating the negative feedback effects of T on GnRH/LH secretion and provide evidence that NKB released from KNDy neurons is part of an auto-feedback loop that generates the pulsatile secretion of Kiss1 and GnRH in the male.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Animais , Dinorfinas/metabolismo , Retroalimentação Fisiológica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Camundongos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais/fisiologia
14.
J Endocrinol Invest ; 34(10): e362-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21697647

RESUMO

BACKGROUND: The 5'-AMP-activated protein kinase (AMPK) plays a fundamental role in regulating energy homeostasis as well as feeding and metabolism, through central and peripheral actions. AMPK is activated by conditions causing ATP depletion and by different metabolic molecules, such as adiponectin and AMPK agonist, such as 5-aminoimidazole- 4-carboxamide-1-ß-D-ribofuranoside (AICAR). AMPK activation has also been shown to affect the migration of different cell types and to participate in the central control of reproductive function, although information concerning AMPK and the development of the hypothalamic reproductive compartment is lacking. AIM: To explore whether AMPK activation by globular adiponectin (gAdipo) and AICAR may affect the migratory ability of GnRH neurons. MATERIALS AND METHODS: We used GN11 immature GnRH neurons (in vitro model system), RT-PCR and Western blot analysis, and Boyden's chamber assay. RESULTS: gAdipo did not affect FBS-stimulated migration of GN11 cells and activated AMPK through the mandatory phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and Akt, which also interact one to each other. AICAR treatment inhibited FBS-stimulated GN11 cell migration, through a long-lasting activation of AMPK. A downstream activation of ERK1/2 by AICAR was also observed and inhibition of ERK1/2 amplified AICAR-induced inhibition of migration. CONCLUSIONS: The direct, but not the indirect, activation of AMPK appears to negatively affect FBSinduced GN11 cell migration, suggesting that the final balance between pro-migratory and anti-migratory actions may also depend upon the specific sequence of intracellular signals activated by one agent.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Aminoimidazol Carboxamida/farmacologia , Movimento Celular/efeitos dos fármacos , Neurônios/fisiologia , Adiponectina/farmacologia , Animais , Linhagem Celular , Ativação Enzimática , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Adiponectina/biossíntese
15.
J Neuroendocrinol ; 23(4): 365-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21314736

RESUMO

Much attention has been drawn to the possible involvement of hypothalamic inflammation in the pathogenesis of metabolic disorders, especially in response to a high-fat diet. Microglia, the macrophages of the central nervous system, can be activated by proinflammatory signals resulting in the local production of specific interleukins and cytokines, which in turn could exacerbate the pathogenic process. Because obesity itself is considered to be a state of chronic inflammation, we evaluated whether being overweight results in microglial activation in the hypothalamus of rats on a normal diet. Accordingly, we used a model of neonatal overnutrition that entailed adjustment of litter size at birth (small litters: four pups/dam versus normal litters: 12 pups/dam) and resulted in a 15% increase in bodyweight and increased circulating leptin levels at postnatal day 60. Rats that were overnourished during neonatal life had an increased number of activated microglia in specific hypothalamic areas such as the ventromedial hypothalamus, which is an important site for metabolic control. However, this effect was not confined to the hypothalamus because significant microglial activation was also observed in the cerebellar white matter. There was no change in circulating tumour necrosis factor (TNF) α levels or TNFα mRNA levels in either the hypothalamus or cerebellum. Interleukin (IL)6 protein levels were higher in both the hypothalamus and cerebellum, with no change in IL6 mRNA levels. Because circulating IL6 levels were elevated, this rise in central IL6 could be a result of increased uptake. Thus, activation of microglia occurs in adult rats exposed to neonatal overnutrition and a moderate increase in weight gain on a normal diet, possibly representing a secondary response to systemic inflammation. Moreover, this activation could result in local changes in specific hypothalamic nuclei that in turn further deregulate metabolic homeostasis.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Microglia/metabolismo , Hipernutrição/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Feminino , Homeostase , Interleucina-6/genética , Interleucina-6/metabolismo , Leptina/sangue , Complexo Principal de Histocompatibilidade , Masculino , Microglia/citologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Am J Physiol Endocrinol Metab ; 299(1): E54-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20407007

RESUMO

Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function, was suggested as potential target for transmitting immune-mediated repression of the gonadotropic axis during acute inflammation, and yet key facets of such a phenomenon remain ill defined. Using lipopolysaccharide S (LPS)-treated male rats as model of inflammation, we document herein the pattern of hypothalamic kisspeptin immunoreactivity (IR) and hormonal responses to kisspeptin during the acute inflammatory phase. LPS injections induced a dramatic but transient drop of serum LH and testosterone levels. Suppression of gonadotropic function was associated with a significant decrease in kisspeptin-IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center for the neuroendocrine control of reproduction. Our results also suggest that suppressed gonadotropic function following inflammatory challenges might involve a reduction in absolute responsiveness to kisspeptin that is independent of the anorectic effects of inflammation.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiopatologia , Hipogonadismo/fisiopatologia , Inflamação/fisiopatologia , Hormônio Luteinizante/fisiologia , Oligopeptídeos/fisiologia , Testosterona/fisiologia , Animais , Área Sob a Curva , Ingestão de Alimentos/fisiologia , Imuno-Histoquímica , Kisspeptinas , Hormônio Luteinizante/sangue , Masculino , Ratos , Ratos Wistar , Testosterona/sangue
17.
Ann Endocrinol (Paris) ; 71(3): 201-2, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20362974

RESUMO

In this presentation, we have provided a succinct state-of-the-art of our knowledge on kisspeptins, the newly identified neuropeptide system with key roles in the control of the gonadotropic axis, in the metabolic regulation of puberty onset and fertility. The experimental evidence revised herein, gathered mostly in rodent models, supports the contention that hypothalamic Kiss1 neurons do operate as a central conduit for conveying metabolic information onto the centers governing reproductive function, through a putative leptin-kisspeptin-GnRH pathway, which is likely to involve Crtc1 and/or mTOR as molecular mediators.


Assuntos
Fertilidade/fisiologia , Puberdade/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Feminino , Humanos , Hipotálamo/fisiologia , Kisspeptinas , Camundongos , Proteínas/fisiologia , Ratos
18.
Endocrinology ; 151(4): 1902-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20160130

RESUMO

Identification of RF-amide-related peptides (RFRP), as putative mammalian orthologs of the avian gonadotropin-inhibitory hormone, has drawn considerable interest on its potential effects and mechanisms of action in the control of gonadotropin secretion in higher vertebrates. Yet, these analyses have so far relied mostly on indirect approaches, while direct assessment of their physiological roles has been hampered by the lack of suitable antagonists. RF9 was recently reported as a selective and potent antagonist of the receptors for RFRP (RFRPR) and the related neuropeptides, neuropeptide FF (NPFF) and neuropeptide AF (NPFF receptor). We show here that RF9 possesses very strong gonadotropin-releasing activities in vivo. Central administration of RF9 evoked a dose-dependent increase of LH and FSH levels in adult male and female rats. Similarly, male and female mice responded to intracerebroventricular injection of RF9 with robust LH secretory bursts. In rats, administration of RF9 further augmented the gonadotropin-releasing effects of kisspeptin, and its stimulatory effects were detected despite the prevailing suppression of gonadotropin secretion by testosterone or estradiol. In fact, blockade of estrogen receptor-alpha partially attenuated gonadotropin responses to RF9. Finally, systemic administration of RF9 modestly stimulated LH secretion in vivo, although no direct effects in terms of gonadotropin secretion were detected at the pituitary in vitro. Altogether, these data are the first to disclose the potent gonadotropin-releasing activity of RF9, a selective antagonist of RFRP (and NPFF) receptors. Our findings support a putative role of the RFRP/gonadotropin-inhibitory hormone system in the central control of gonadotropin secretion in mammals and have interesting implications concerning the potential therapeutic indications and pharmacological effects of RF9.


Assuntos
Adamantano/análogos & derivados , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Hormônio Foliculoestimulante/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Adamantano/metabolismo , Adamantano/farmacologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas , Masculino , Camundongos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas/farmacologia , Radioimunoensaio , Ratos , Ratos Wistar , Fatores de Tempo
19.
Int J Androl ; 33(2): 360-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19906185

RESUMO

Kisspeptins, the products of Kiss1 gene acting via G protein-coupled receptor 54 (also termed Kiss1R), have recently emerged as essential gatekeepers of puberty onset and fertility. Compelling evidence has now documented that expression and function of hypothalamic Kiss1 system is sensitive not only to the activational effects but also to the organizing actions of sex steroids during critical stages of development. Thus, studies in rodents have demonstrated that early exposures to androgens and oestrogens are crucial for proper sexual differentiation of the patterns of Kiss1 mRNA expression, whereas the actions of oestrogen along puberty are essential for the rise of hypothalamic kisspeptins during this period. This physiological substrate provides the basis for potential endocrine disruption of reproductive maturation and function by xeno-steroids acting on the kisspeptin system. Indeed, inappropriate exposures to synthetic oestrogenic compounds during early critical periods in rodents persistently decreased hypothalamic Kiss1 mRNA levels and kisspeptin fibre density in discrete hypothalamic nuclei, along with altered gonadotropin secretion and/or gonadotropin-releasing hormone neuronal activation. The functional relevance of this phenomenon is stressed by the fact that exogenous kisspeptin was able to rescue defective gonadotropin secretion in oestrogenized animals. Furthermore, early exposures to the environmentally-relevant oestrogen, bisphenol-A, altered the hypothalamic expression of Kiss1/kisspeptin in rats and mice. Likewise, maternal exposure to a complex cocktail of endocrine disruptors has been recently shown to disturb foetal hypothalamic Kiss1 mRNA expression in sheep. As a whole, these data document the sensitivity of Kiss1 system to changes in sex steroid milieu during critical periods of sexual maturation, and strongly suggest that alterations of endogenous kisspeptin tone induced by inappropriate (early) exposures to environmental compounds with sex steroid activity might be mechanistically relevant for disruption of puberty onset and gonadotropin secretion later in life. The potential interaction of xeno-hormones with other environmental modulators (e.g., nutritional state) of the Kiss1 system warrants further investigation.


Assuntos
Proteínas/fisiologia , Puberdade/efeitos dos fármacos , Proteínas Supressoras de Tumor/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Kisspeptinas , Camundongos , Hipófise/efeitos dos fármacos , Hipófise/fisiologia , Ratos , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Kisspeptina-1 , Diferenciação Sexual/efeitos dos fármacos
20.
Endocrinology ; 151(2): 722-30, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19952274

RESUMO

Kisspeptins (Kp) have recently emerged as master regulators of the reproductive axis and among the most potent elicitors of GnRH-gonadotropin secretion. Despite their paramount importance in reproductive physiology and their potential therapeutic implications, development of Kp antagonists has remained elusive, and only recently has the first compound with the ability to block Kp actions in vitro and in vivo, namely p234, been reported. However, previous in vivo studies all used acute central injections, whereas characterization of the effects of the antagonist after continuous or systemic administration, which poses pharmacological challenges, is still pending. We report herein a comprehensive series of analyses on the impact of continuous intracerebroventricular infusion of p234 on puberty onset and the preovulatory surge of gonadotropins in the female rat. In addition, the effects of systemic (ip) administration of a tagged p234-penetratin, with a predicted higher permeability at the blood-brain barrier, on Kp-10 induced gonadotropin secretion were evaluated. Central infusion of p234 to pubertal females delayed vaginal opening and decreased uterine and ovarian weights at the expected time of puberty, without affecting body weight. Likewise, chronic intracerebroventricular administration of p234 for 4 d prevented the preovulatory surges of LH and FSH. In addition, systemic (ip) administration of p234-penetratin significantly attenuated acute LH and FSH responses to Kp-10, either after intracerebroventricular or ip injection of Kp. Our data document the validity of p234 for antagonizing Kp actions in vivo and provide direct experimental evidence for the important role of Kp signaling in the key events of female reproduction, such as puberty onset and the preovulatory surge of gonadotropins.


Assuntos
Oligopeptídeos/farmacologia , Ovulação/fisiologia , Peptídeos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Estro/efeitos dos fármacos , Estro/fisiologia , Feminino , Injeções Intraventriculares , Kisspeptinas , Masculino , Oligopeptídeos/administração & dosagem , Oligopeptídeos/antagonistas & inibidores , Ovário/anatomia & histologia , Ovário/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/antagonistas & inibidores , Ratos , Ratos Wistar , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Útero/anatomia & histologia , Útero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA