Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409675

RESUMO

Biosynthetic gene clusters (BGCs) are organized groups of genes involved in the production of specialized metabolites. Typically, one BGC is responsible for the production of one or several similar compounds with bioactivities that usually only vary in terms of strength and/or specificity. Here we show that the previously described ferroverdins and bagremycins, which are families of metabolites with different bioactivities, are produced from the same BGC, whereby the fate of the biosynthetic pathway depends on iron availability. Under conditions of iron depletion, the monomeric bagremycins are formed, representing amino-aromatic antibiotics resulting from the condensation of 3-amino-4-hydroxybenzoic acid with p-vinylphenol. Conversely, when iron is abundantly available, the biosynthetic pathway additionally produces a molecule based on p-vinylphenyl-3-nitroso-4-hydroxybenzoate, which complexes iron to form the trimeric ferroverdins that have anticholesterol activity. Thus, our work shows a unique exception to the concept that BGCs should only produce a single family of molecules with one type of bioactivity and that in fact different bioactive molecules may be produced depending on the environmental conditions.IMPORTANCE Access to whole-genome sequences has exposed the general incidence of the so-called cryptic biosynthetic gene clusters (BGCs), thereby renewing their interest for natural product discovery. As a consequence, genome mining is the often first approach implemented to assess the potential of a microorganism for producing novel bioactive metabolites. By revealing a new level of complexity of natural product biosynthesis, we further illustrate the difficulty of estimation of the panel of molecules associated with a BGC based on genomic information alone. Indeed, we found that the same gene cluster is responsible for the production of compounds which differ in terms of structure and bioactivity. The production of these different compounds responds to different environmental triggers, which suggests that multiplication of culture conditions is essential for revealing the entire panel of molecules made by a single BGC.


Assuntos
Aminobenzoatos/metabolismo , Antibacterianos/metabolismo , Vias Biossintéticas/genética , Compostos Ferrosos/metabolismo , Quelantes de Ferro/metabolismo , Família Multigênica , Compostos Nitrosos/metabolismo , Aminobenzoatos/química , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos Ferrosos/química , Genoma Bacteriano/genética , Ferro/metabolismo , Quelantes de Ferro/química , Estrutura Molecular , Compostos Nitrosos/química , Filogenia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/metabolismo
2.
Front Microbiol ; 9: 1742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127771

RESUMO

Actinobacteria are prolific producers of antitumor antibiotics with antiproliferative activity, but why these bacteria synthetize metabolites with this bioactivity has so far remained a mystery. In this work we raised the hypothesis that under certain circumstances, production of antiproliferative agents could be part of a genetically programmed death of the producing organism. While programmed cell death (PCD) has been well documented when Streptomyces species switch from vegetative (nutrition) to aerial (reproduction) growth, lethal determinants are yet to be discovered. Using DNA-damaging prodiginines of Streptomyces coelicolor as model system, we revealed that, under certain conditions, their biosynthesis is always triggered in the dying zone of the mycelial network prior to morphological differentiation, right after an initial round of cell death. The programmed massive death round of the vegetative mycelium is absent in a prodiginine non-producer (ΔredD strain), and mutant complementation restored both prodiginine production and cell death. The redD null mutant of S. coelicolor also showed increased DNA, RNA, and proteins synthesis when most of the mycelium of the wild-type strain was dead when prodiginines accumulated. Moreover, addition of the prodiginine synthesis inhibitors also resulted in enhanced accumulation of viable filaments. Overall, our data enable us to propose a model where the time-space production of prodiginines is programmed to be triggered by the perception of dead cells, and their biosynthesis further amplifies the PCD process. As prodiginine production coincides with the moment S. coelicolor undergoes morphogenesis, the production of these lethal compounds might be used to eradicate the obsolete part of the population in order to provide nutrients for development of the survivors. Hence, next to weapons in competition between organisms or signals in inter- and intra-species communications, we propose a third role for antibiotics (in the literal meaning of the word 'against life') i.e., elements involved in self-toxicity in order to control cell proliferation, and/or for PCD associated with developmental processes.

3.
Curr Opin Microbiol ; 45: 100-108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642052

RESUMO

Streptomyces and few other Actinobacteria naturally produce compounds currently used in chemotherapy for being cytotoxic against various types of tumor cells by damaging the DNA structure and/or inhibiting DNA functions. DNA-damaging antitumor antibiotics belong to different classes of natural compounds that are structurally unrelated such as anthracyclines, bleomycins, enediynes, mitomycins, and prodiginines. By targeting a ubiquitous molecule and housekeeping functions, these compounds are also cytotoxic to their producer. How DNA-damaging antitumor antibiotics producing actinobacteria avoid suicide is the theme of the current review which illustrates the different strategies developed for self-resistance such as toxin sequestration, efflux, modification, destruction, target repair/protection, or stochastic activity. Finally, the observed spatio-temporal correlation between cell death, morphogenesis, and prodiginine production in S. coelicolor suggests a new physiological role for these molecules, that, together with their self-resistance mechanisms, would function as new types of toxin-antitoxin systems recruited in programmed cell death processes of the producer.


Assuntos
Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , DNA Bacteriano/genética , Actinobacteria/metabolismo , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana
4.
J Microbiol Methods ; 93(2): 138-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23517679

RESUMO

Prodigiosin-like pigments or prodiginines (PdGs) are promising drugs owing to their reported antitumor, antibiotic, and immunosuppressive activities. These natural compounds are produced by several bacteria, including Streptomyces coelicolor and Serratia marcescens as most commonly studied models. The bright red color of these tripyrrole pigments made them excellent reporter molecules for studies aimed at understanding the molecular mechanisms that control secondary metabolite production in microorganisms. However, the natural red fluorescence of PdGs has only been rarely used as a biophysical parameter for detection and assessment of PdG biosynthesis. In this work, we used S. coelicolor in order to exemplify how intrinsic red fluorescence could be utilized for rapid, low-cost, sensitive, specific and accurate semi-quantitative analyses of PdG biosynthesis. Additionally, and contrary to the colorimetric-based approach, the fluorescence-based method allows in situ spatio-temporal visualization of PdG synthesis throughout a solid culture of S. coelicolor. As PdG production is related to cell differentiation, their red autofluorescence could be exploited, by means of confocal microscopy, as a natural marker of the entrance into a crucial developmental stage in the course of the S. coelicolor life cycle.


Assuntos
Produtos Biológicos/análise , Prodigiosina/análogos & derivados , Streptomyces coelicolor/metabolismo , Prodigiosina/análise , Sensibilidade e Especificidade , Streptomyces coelicolor/química
5.
Antonie Van Leeuwenhoek ; 102(3): 425-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22733060

RESUMO

Filamentous microorganisms of the bacterial genus Streptomyces have a complex life cycle that includes physiological and morphological differentiations. It is now fairly well accepted that lysis of Streptomyces vegetative mycelium induced by programmed cell death (PCD) provides the required nutritive sources for the bacterium to erect spore-forming aerial hyphae. However, little is known regarding cellular compounds released during PCD and the contribution of these molecules to the feeding of surviving cells in order to allow them to reach the late stages of the developmental program. In this work we assessed the effect of extracellular sugar phosphates (that are likely to be released in the environment upon cell lysis) on the differentiation processes. We demonstrated that the supply of phosphorylated sugars, under inorganic phosphate limitation, delays the occurrence of the second round of PCD, blocks streptomycetes life cycle at the vegetative state and inhibits antibiotic production. The mechanism by which sugar phosphates affect development was shown to involve genes of the Pho regulon that are under the positive control of the two component system PhoR/PhoP. Indeed, the inactivation of the response regulator phoP of Streptomyces lividans prevented the 'sugar phosphate effect' whereas the S. lividans ppk (polyphosphate kinase) deletion mutant, known to overexpress the Pho regulon, presented an enhanced response to phosphorylated sugars.


Assuntos
Proteínas de Bactérias/metabolismo , Streptomyces lividans/enzimologia , Streptomyces lividans/metabolismo , Fosfatos Açúcares/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Ciclo Celular , Morte Celular , Deleção de Genes , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces lividans/crescimento & desenvolvimento , Streptomyces lividans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA