Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Cancer Res Commun ; 4(3): 919-937, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38546390

RESUMO

Lung cancer is the leading cause of cancer deaths. Lethal pulmonary adenocarcinomas (ADC) present with frequent mutations in the EGFR. Genetically engineered murine models of lung cancer expedited comprehension of the molecular mechanisms driving tumorigenesis and drug response. Here, we systematically analyzed the evolution of tumor heterogeneity in the context of dynamic interactions occurring with the intermingled tumor microenvironment (TME) by high-resolution transcriptomics. Our effort identified vulnerable tumor-specific epithelial cells, as well as their cross-talk with niche components (endothelial cells, fibroblasts, and tumor-infiltrating immune cells), whose symbiotic interface shapes tumor aggressiveness and is almost completely abolished by treatment with Unesbulin, a tubulin binding agent that reduces B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) activity. Simultaneous magnetic resonance imaging (MRI) analysis demonstrated decreased tumor growth, setting the stage for future investigations into the potential of novel therapeutic strategies for EGFR-mutant ADCs. SIGNIFICANCE: Targeting the TME is an attractive strategy for treatment of solid tumors. Here we revealed how EGFR-mutant landscapes are affected at the single-cell resolution level during Unesbulin treatment. This novel drug, by targeting cancer cells and their interactions with crucial TME components, could be envisioned for future therapeutic advancements.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Células Endoteliais , Microambiente Tumoral/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Comunicação Celular , Receptores ErbB/genética
2.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260486

RESUMO

The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.

3.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260640

RESUMO

Immunomodulatory imide drugs (IMiDs) degrade specific C2H2 zinc finger degrons in transcription factors, making them effective against certain cancers. SALL4, a cancer driver, contains seven C2H2 zinc fingers in four clusters, including an IMiD degron in zinc finger cluster two (ZFC2). Surprisingly, IMiDs do not inhibit growth of SALL4 expressing cancer cells. To overcome this limit, we focused on a non-IMiD degron, SALL4 zinc finger cluster four (ZFC4). By combining AlphaFold and the ZFC4-DNA crystal structure, we identified a potential ZFC4 drug pocket. Utilizing an in silico docking algorithm and cell viability assays, we screened chemical libraries and discovered SH6, which selectively targets SALL4-expressing cancer cells. Mechanistic studies revealed that SH6 degrades SALL4 protein through the CUL4A/CRBN pathway, while deletion of ZFC4 abolished this activity. Moreover, SH6 led to significant 62% tumor growth inhibition of SALL4+ xenografts in vivo and demonstrated good bioavailability in pharmacokinetic studies. In summary, these studies represent a new approach for IMiD independent drug discovery targeting C2H2 transcription factors in cancer.

4.
Genome Res ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918959

RESUMO

Point mutations within the TERT promoter are the most recurrent somatic noncoding mutations identified across different cancer types, including glioblastoma, melanoma, hepatocellular carcinoma, and bladder cancer. They are most abundant at -146C > T and -124C > T, and rarer at -57A > C, with the latter originally described as a familial case, but subsequently shown also to occur somatically. All three mutations create de novo E26-specific (ETS) binding sites and result in activation of the TERT gene, allowing cancer cells to achieve replicative immortality. Here, we used a systematic proteomics screen to identify transcription factors preferentially binding to the -146C > T, -124C > T, and -57A > C mutations. Although we confirmed binding of multiple ETS factors to the mutant -146C > T and -124C > T sequences, we identified E4F1 as a -57A > C-specific binder and ZNF148 as a TERT wild-type (WT) promoter binder that showed reduced interaction with the -124C > T allele. Both proteins are activating transcription factors that bind specifically to the -57A > C and WT (at position 124) TERT promoter sequence in corresponding cell lines, and up-regulate TERT transcription and telomerase activity. Our work describes new regulators of TERT gene expression with possible roles in cancer.

6.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461690

RESUMO

Oncofetal transcription factor SALL4 is essential for cancer cell survival. 1-5 Recently, several groups reported that immunomodulatory imide drugs (IMiDs) could degrade SALL4 in a proteasome-dependent manner. 6,7 Intriguingly, we observed that IMiDs had no effect on SALL4-positive cancer cells. Further studies demonstrated that IMiDs could only degrade SALL4A, one of the SALL4 isoforms. This finding raises the possibility that SALL4B, the isoform not affected by IMiDs, may be essential for SALL4-mediated cancer cell survival. SALL4B knockdown led to an increase in apoptosis and inhibition of cancer cell growth. SALL4B gain-of-function alone led to liver tumor formation in mice. Our observation that protein degraders can possess isoform-specific effects exemplifies the importance of delineating drug action and oncogenesis at the isoform level to develop more effective cancer therapeutics.

7.
Cancer Sci ; 114(6): 2400-2413, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36916958

RESUMO

Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Transformação Celular Neoplásica/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Neoplasias Pulmonares/genética , Humanos
8.
Blood ; 141(25): 3078-3090, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36796022

RESUMO

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.


Assuntos
Fatores de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Regulação para Baixo , Fatores de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Leucemia Mieloide Aguda/genética , Adenosina/metabolismo
9.
Gene ; 851: 147049, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36384171

RESUMO

A cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreERT2 transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24 m). Kinetic analysis of labeled cells after tamoxifen injection and transplantation assays revealed that eR1-driven CreERT2 activity marks dormant adult HSCs which slowly but steadily contribute to unperturbed hematopoiesis. Fetal and child HSCs that are uniformly or intermediately active were also efficiently targeted. Notably, a gene ablation at distinct developmental stages, enabled by this system, resulted in different phenotypes. Similarly, an oncogenic Kras induction at distinct ages caused different spectrums of malignant diseases. These results demonstrate that the eR1-CreERT2 Tg mouse serves as a powerful resource for the analyses of both normal and malignant HSCs at all developmental stages.


Assuntos
Células-Tronco Adultas , Células-Tronco Hematopoéticas , Animais , Camundongos , Cinética , Feto , Engenharia Genética , Camundongos Transgênicos , Subunidade alfa 2 de Fator de Ligação ao Core/genética
10.
Proc Natl Acad Sci U S A ; 119(43): e2203180119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269860

RESUMO

The phosphoinositide 3-kinase (PI3K) pathway represents the most hyperactivated oncogenic pathway in triple-negative breast cancer (TNBC), a highly aggressive tumor subtype encompassing ∼15% of breast cancers and which possesses no targeted therapeutics. Despite critical contributions of its signaling arms to disease pathogenesis, PI3K pathway inhibitors have not achieved expected clinical responses in TNBC, owing largely to a still-incomplete understanding of the compensatory cascades that operate downstream of PI3K. Here, we investigated the contributions of long noncoding RNAs (lncRNAs) to PI3K activities in clinical and experimental TNBC and discovered a prominent role for LINC01133 as a PI3K-AKT signaling effector. We found that LINC01133 exerted protumorigenic roles in TNBC and that it governed a previously undescribed mTOR Complex 2 (mTORC2)-dependent pathway that activated AKT in a PI3K-independent manner. Mechanistically, LINC01133 induced the expression of the mTORC2 component PROTOR1/PRR5 by competitively coupling away its negative messenger RNA (mRNA) regulator, the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1). PROTOR1/PRR5 in turn was sufficient and necessary for LINC01133-triggered functions, casting previously unappreciated roles for this Rictor-binding protein in cellular signaling and growth. Notably, LINC01133 antagonism undermined cellular growth, and we show that the LINC01133-PROTOR1/PRR5 pathway was tightly associated with TNBC poor patient survival. Altogether, our findings uncovered a lncRNA-driven signaling shunt that acts as a critical determinant of malignancy downstream of the PI3K pathway and as a potential RNA therapeutic target in clinical TNBC management.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/genética , Inibidores de Fosfoinositídeo-3 Quinase , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , RNA Mensageiro , Ribonucleoproteínas Nucleares Heterogêneas , Linhagem Celular Tumoral
11.
Commun Biol ; 5(1): 961, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104445

RESUMO

The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.


Assuntos
Hematopoese , Fator de Transcrição AP-1 , Animais , Sítios de Ligação , Diferenciação Celular/genética , Hematopoese/genética , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun , Fator de Transcrição AP-1/genética
12.
Cells ; 11(16)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36010677

RESUMO

Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.


Assuntos
Neoplasias , Fatores de Transcrição , Adulto , Regulação da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
15.
Nat Commun ; 13(1): 2614, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551192

RESUMO

The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Adulto , Mutação em Linhagem Germinativa , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
16.
N Engl J Med ; 386(21): 1998-2010, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35613022

RESUMO

BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Assuntos
Antineoplásicos , Desmetilação , Síndromes Mielodisplásicas , Oncogenes , Regulação para Cima , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desmetilação/efeitos dos fármacos , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes/efeitos dos fármacos , Oncogenes/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Semin Cancer Biol ; 85: 253-275, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427766

RESUMO

Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transdução de Sinais
19.
Curr Opin Hematol ; 29(1): 34-43, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854833

RESUMO

PURPOSE OF REVIEW: Advancements in the next-generation sequencing technologies have identified rare transcripts of long noncoding RNAs (lncRNAs) in the genome of cancers, including in acute myeloid leukemia (AML). The purpose of this review is to highlight the contribution of lncRNAs in AML pathogenesis, prognosis, and chemoresistance. RECENT FINDINGS: Several studies have recently reported that deregulated lncRNAs are novel key players in the development of AML and are associated with AML pathophysiology and may serve as prognostic indicators. A few aberrantly expressed lncRNAs that correlated with the recurrent genetic mutations in AML such as NPM1 and RUNX1 have recently been characterized. Moreover, a few lncRNAs in MLL-rearranged leukemia have been described. Additionally, the involvement of lncRNAs in AML chemoresistance has been postulated. SUMMARY: Investigating the functional roles of the noncoding regions including lncRNAs, may provide novel insights into the pathophysiology, refine the prognostic schema, and provide novel therapeutic treatment strategies in AML.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , RNA Longo não Codificante/genética
20.
Sci Adv ; 7(40): eabg1695, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597139

RESUMO

Pseudogenes, noncoding homologs of protein-coding genes, once considered nonfunctional evolutionary relics, have recently been linked to patient prognoses and cancer subtypes. Despite this potential clinical importance, only a handful of >12,000 pseudogenes in humans have been characterized in cancers to date. Here, we describe a previously unrecognized role for pseudogenes as potent epigenetic regulators that can demethylate and activate oncogenes. We focused on SALL4, a known oncogene in hepatocellular carcinoma (HCC) with eight pseudogenes. Using a locus-specific demethylating technology, we identified the critical CpG region for SALL4 expression. We demonstrated that SALL4 pseudogene 5 hypomethylates this region through interaction with DNMT1, resulting in SALL4 up-regulation. Intriguingly, pseudogene 5 is significantly up-regulated in a hepatitis B virus model before SALL4 induction, and both are increased in patients with HBV-HCC. Our results suggest that pseudogene-mediated demethylation represents a novel mechanism of oncogene activation in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA