Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Transplant ; 32: 9636897231152381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786355

RESUMO

Bone marrow stem cell (BMSC) transplantation during coronary artery bypass graft (CABG) is an innovative treatment for ischemic heart disease (IHD). We conduct a meta-analysis to examine whether patients with IHD presenting heart failure with reduced ejection fraction (HFrEF) can be beneficent from CABG with additional BMSC transplantation. Electronic searches were performed on PubMed, EMBASE, Cochrane Library, and ClinicalTrials.gov from their inception to July 2021. The efficacy was based on left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic volume index (LVEDVi), left ventricular end-systolic volume index (LVESVi), and 6-min walk test (6MWT) change after treatment. Eight randomized-controlled trials (RCTs) were included in this meta-analysis, with a total of 350 patients. Results showed BMSC transplantation significantly improved the LVEF [mean difference (MD) = 6.23%, 95% confidence interval (CI): 3.22%-9.24%, P < 0.0001], LVEDVi (MD = -20.15 ml/m2, 95% CI: -30.49 to -9.82 ml/m2, P < 0.00001), and LVESVi (MD = -17.69 ml/m2, 95% CI: -25.24 to -10.14 ml/m2, P < 0.00001). There was no statistically significant difference in the improvement of LVEDD, LVEDV, and 6MWT between the cell transplantation group and control groups. Subgroup analysis revealed that the intervention for control group could affect the efficacy of BMSC transplantation. Sensitivity analysis found the conclusion of LVEDD, LVEDV, and 6MWT changes was not stable. Therefore, among patients with IHD presenting HFrEF, BMSC transplantation during CABG is promising to be beneficial for postoperative left ventricular (LV) function improvement. However, according to the unstable results of the sensitivity analysis, it cannot be concluded whether the extra step has a positive effect on left ventricular remodeling and exercise capacity. RCTs with larger cohorts and more strict protocols are needed to validate these conclusions.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Disfunção Ventricular Esquerda , Humanos , Medula Óssea , Ponte de Artéria Coronária/métodos , Função Ventricular Esquerda , Volume Sistólico , Disfunção Ventricular Esquerda/terapia , Insuficiência Cardíaca/cirurgia , Transplante de Medula Óssea/métodos , Resultado do Tratamento
2.
J Thorac Dis ; 14(8): 2977-2986, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36071756

RESUMO

Background: Serum cystatin C concentration is associated with cardiovascular disease. However, the relationship between cystatin C and acute aortic dissection (AAD) remains unclear. In the current study, we aim to evaluate the predictive value of cystatin C in the occurrence of acute kidney injury (AKI) and the prognosis of AAD patients. Methods: The patients with AAD admitted to our hospital from November 2019 through January 2022 were consecutively included in the retrospective cohort study. A complete blood cell count, serum biochemistry tests, including cystatin C and creatinine, in-hospital mortality and the incidence of AKI were recorded. All the patients were categorized into four groups according to the quartile of their serum cystatin C levels. Multivariate logistic and Cox regression analyses were conducted to determine the independent risk factors for the incidence of AKI and the prognosis of AAD patients, respectively. Kaplan-Meier analyses and log-rank tests were used to evaluate differences in survival. Receiver operating characteristic (ROC) curves were used to assess the predictive value of cystatin C for short-term mortality and the incidence of AKI in AAD patients. Results: A total of 357 patients were included in this study. The results showed that the higher the concentration of cystatin C, the higher the level of serum creatinine and the higher the incidence of AKI. Mortality was significantly higher in the group with serum cystatin C levels >1.18 mg/L. Type A AAD, white blood cell count >10×109/L, platelet count <100×109/L, and serum cystatin C concentration >1.18 mg/L [adjusted hazards ratio (HR) =2.405, 95% confidence interval (CI), 1.029-4.063, P=0.041] were independent risk factors for in-hospital mortality. Cystatin C levels >1.18 mg/L remained an independent predictor of AKI in AAD after adjusting for the confounding [odds ratio (OR) 76.489, 95% CI, 25.586-228.660]. The areas under the ROC curves of cystatin C in predicting the mortality and incidence of AKI in AAD patients were 0.655 (95% CI, 0.551-0.760) and 0.807 (95% CI, 0.758-0.856), respectively. Conclusions: In sum, serum cystatin C concentration is a potential predictor of short-term mortality and the incidence of AKI in AAD patients.

3.
Int J Stem Cells ; 15(2): 136-143, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34711694

RESUMO

Background and Objectives: Circulating endothelial progenitor cells (EPCs) participate in vascular repair and predict cardiovascular outcomes. The aim of this study was to investigate the correlation between EPCs and abdominal aortic aneurysms (AAAs). Methods and Results: Patients (age 67±9.41 years) suffering from AAAs (aortic diameters 58.09±11.24 mm) were prospectively enrolled in this study. All patients received endovascular aneurysm repair (EVAR). Blood samples were taken preoperatively and 14 days after surgery from patients with aortic aneurysms. Samples were also obtained from age-matched control subjects. Circulating EPCs were defined as those cells that were double positive for CD34 and CD309. Rat models of AAA formation were generated by the peri-adventitial elastase application of either saline solution (control; n=10), or porcine pancreatic elastase (PPE; n=14). The aortas were analyzed using an ultrasonic video system and immunohistochemistry. The levels of CD34+/CD309+ cells in the peripheral blood mononuclear cell populations were measured by flow cytometry. The baseline numbers of circulating EPCs (CD34+/CD309+) in the peripheral blood were significantly smaller in AAA patients compared with control subjects. The number of EPCs doubled by the 14th day after EVAR. A total of 78.57% of rats in the PPE group (11/14) formed AAAs (dilation ratio >150%). The numbers of EPCs from defined AAA rats were significantly decreased compared with the control group. Conclusions: EPC levels may be useful for monitoring abdominal aorta aneurysms and rise after EVAR in patients with aortic aneurysms, and might contribute to the rapid endothelialization of vessels.

4.
Stem Cell Res Ther ; 11(1): 373, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859268

RESUMO

BACKGROUND: Myocardial infarction (MI) is a severe disease that often associated with dysfunction of angiogenesis. Cell-based therapies for MI using mesenchymal stem cell (MSC)-derived exosomes have been well studied due to their strong proangiogenic effect. Genetic modification is one of the most common methods to enhance exosome therapy. This study investigated the proangiogenic and cardioprotective effect of exosomes derived from hypoxia-inducible factor 1-alpha (HIF-1α)-modified MSCs. METHODS: Lentivirus containing HIF-1α overexpressing vector was packaged and used to infect MSCs. Exosomes were isolated from MSC-conditioned medium by ultracentrifugation. Human umbilical vein endothelial cells (HUVECs) were treated under hypoxia condition for 48 h co-cultured with PBS, control exosomes, or HIF-1α-overexpressed exosomes, respectively. Then the preconditioned HUVECs were subjected to tube formation assay, Transwell assay, and EdU assay to evaluate the protective effect of exosomes. Meanwhile, mRNA and secretion levels of proangiogenic factors were measured by RT-qPCR and ELISA assays. In vivo assays were conducted using the rat myocardial infarction model. PBS, control exosomes, or HIF-1α-overexpressed exosomes were injected through tail vein after MI surgery. Heart function was assessed by echocardiography at days 3, 14, and 28. At day 7, mRNA and protein expression levels of proangiogenic factors in the peri-infarction area and circulation were evaluated, respectively. At day 28, hearts were collected and subjected to H&E staining, Masson's trichrome staining, and immunofluorescent staining. RESULTS: HIF-1α-overexpressed exosomes rescued the impaired angiogenic ability, migratory function, and proliferation of hypoxia-injured HUVECs. Simultaneously, HIF-1α-overexpressed exosomes preserved heart function by promoting neovessel formation and inhibiting fibrosis in the rat MI model. In addition, both in vitro and in vivo proangiogenic factors mRNA and protein expression levels were elevated after HIF-1α-overexpressed exosome application. CONCLUSION: HIF-1α-overexpressed exosomes could rescue the impaired angiogenic ability, migration, and proliferation of hypoxia-pretreated HUVECs in vitro and mediate cardioprotection by upregulating proangiogenic factors and enhancing neovessel formation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Neovascularização Patológica , Neovascularização Fisiológica , Ratos
5.
Cell Death Dis ; 11(7): 533, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665543

RESUMO

Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are a well-known family of calcium-dependent cysteine proteases that regulate several processes, including cellular adhesion, proliferation, and migration, as well as inflammation and angiogenesis. CAPNS1, the common regulatory subunit of Calpain-1 and 2, is indispensable for catalytic subunit stabilization and activity. Calpain inhibition has been shown to reduce organ damage in various disease models. Here, we report that endothelial calpain-1/2 is crucially involved in skin wound healing. Using a mouse genetic model where Capns1 is deleted only in endothelial cells, we showed that calpain-1/2 disruption is associated with reduced injury-activated inflammation, reduced CD31+ blood vessel density, and delayed wound healing. Moreover, in cultured HUVECs, inhibition of calpain reduced TNF-α-induced proliferation, migration, and tube formation. Deletion of Capns1 was associated with elevated levels of IκB and downregulation of ß-catenin expression in endothelial cells. These observations delineate a novel mechanistic role for calpain in the crosstalk between inflammation and angiogenesis during skin repair.


Assuntos
Calpaína/antagonistas & inibidores , Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células , Humanos , Camundongos
6.
J Tissue Eng Regen Med ; 14(4): 588-599, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068957

RESUMO

Bone marrow-derived mesenchymal stromal cells (MSCs) have been wildly applied to cell-based strategies for tissue engineering and regenerative medicine; however, they have to undergo the senescence process and thus appeared to be less therapeutic effective. HMGA2, a protein belonged to high mobility group A (HMGA) family, exhibits an inverse expression level related to embryonic development and acts as a developmental regulator in stem cell self-renewal progression. Therefore, we performed senescence-associated ß-galactosidase (SA-ß-gal) staining, transwell assay, to examine the changes of MSCs in different stages and then over-expressed HMGA2 in MSCs by lentivirus transfection. We found the percentage of SA-ß-gal staining positive cells in MSCs from 24-month-old Sprague-Dawley (SD) rats (O-MSCs) was significantly higher compared with MSCs from 2-week-old SD rats (Y-MSCs), and the expression levels of P21 and P53, two senescence-related molecules, were also significantly up-regulated in O-MSCs than in Y-MSCs. In contrast, the HMGA2 expression level in O-MSCs was dramatically down-regulated in contrast to Y-MSCs. In additional, the migration ability in O-MSCs was significantly attenuated than in Y-MSCs. After successfully over-expressed HMGA2 in O-MSCs, the percentage of SA-ß-gal staining positive cells and the expression levels of P21 and P53 were reduced, and the migration ability was improved compared with O-MSCs without treatment. Further, mRNA sequencing analysis revealed that overexpression of HMGA2 changed the expression of genes related to cell proliferation and senescence, such as Lyz2, Pf4, Rgs2, and Mstn. Knockdown of Rgs2 in HMGA2 overexpression O-MSCs could antagonize the protective effect of HMGA2 in the senescence process of O-MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Senescência Celular , Proteína HMGA2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Proteína HMGA2/genética , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
7.
Diabetologia ; 62(5): 860-872, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778623

RESUMO

AIMS/HYPOTHESIS: The role of non-cardiomyocytes in diabetic cardiomyopathy has not been fully addressed. This study investigated whether endothelial cell calpain plays a role in myocardial endothelial injury and microvascular rarefaction in diabetes, thereby contributing to diabetic cardiomyopathy. METHODS: Endothelial cell-specific Capns1-knockout (KO) mice were generated. Conditions mimicking prediabetes and type 1 and type 2 diabetes were induced in these KO mice and their wild-type littermates. Myocardial function and coronary flow reserve were assessed by echocardiography. Histological analyses were performed to determine capillary density, cardiomyocyte size and fibrosis in the heart. Isolated aortas were assayed for neovascularisation. Cultured cardiac microvascular endothelial cells were stimulated with high palmitate. Angiogenesis and apoptosis were analysed. RESULTS: Endothelial cell-specific deletion of Capns1 disrupted calpain 1 and calpain 2 in endothelial cells, reduced cardiac fibrosis and hypertrophy, and alleviated myocardial dysfunction in mouse models of diabetes without significantly affecting systemic metabolic variables. These protective effects of calpain disruption in endothelial cells were associated with an increase in myocardial capillary density (wild-type vs Capns1-KO 3646.14 ± 423.51 vs 4708.7 ± 417.93 capillary number/high-power field in prediabetes, 2999.36 ± 854.77 vs 4579.22 ± 672.56 capillary number/high-power field in type 2 diabetes and 2364.87 ± 249.57 vs 3014.63 ± 215.46 capillary number/high-power field in type 1 diabetes) and coronary flow reserve. Ex vivo analysis of neovascularisation revealed more endothelial cell sprouts from aortic rings of prediabetic and diabetic Capns1-KO mice compared with their wild-type littermates. In cultured cardiac microvascular endothelial cells, inhibition of calpain improved angiogenesis and prevented apoptosis under metabolic stress. Mechanistically, deletion of Capns1 elevated the protein levels of ß-catenin in endothelial cells of Capns1-KO mice and constitutive activity of calpain 2 suppressed ß-catenin protein expression in cultured endothelial cells. Upregulation of ß-catenin promoted angiogenesis and inhibited apoptosis whereas knockdown of ß-catenin offset the protective effects of calpain inhibition in endothelial cells under metabolic stress. CONCLUSIONS/INTERPRETATION: These results delineate a primary role of calpain in inducing cardiac endothelial cell injury and impairing neovascularisation via suppression of ß-catenin, thereby promoting diabetic cardiomyopathy, and indicate that calpain is a promising therapeutic target to prevent diabetic cardiac complications.


Assuntos
Calpaína/genética , Calpaína/fisiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Células Endoteliais/enzimologia , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Apoptose , Diabetes Mellitus Tipo 2/metabolismo , Fibroblastos/metabolismo , Deleção de Genes , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , beta Catenina/metabolismo
8.
Biomed Res Int ; 2018: 3530647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854745

RESUMO

OBJECTIVE: The study aim to investigate the role of microRNA-155 (miR-155) on the immunoregulatory function of bone marrow mesenchymal stem cells (MSCs). METHODS: MSCs were isolated from 2-week-old Sprague-Dawley rats and identified by flow cytometry using anti-CD29, anti-CD44, anti-CD34, and anti-CD45 antibodies. MSCs were transfected with miR155-mimics, miR155-inhibitor, and control oligos, respectively, and then cocultured with spleen mononuclear cells (SMCs). The mRNA levels of Th1, Th2, Th17, and Treg cell-specific transcription factors (Tbx21, Gata3, Rorc, and Foxp3, resp.) and the miR-155 target gene SOCS1 were detected by quantitative real-time PCR (qPCR) in SMCs. The proportion of CD4+ FOXP3+ Treg cells was detected by flow cytometry. In addition, the effects of MSCs transfected with miR-155 on the migration of rat SMCs were investigated by transwell chamber. RESULTS: CD29 and CD44 were expressed in MSCs, while CD34 and CD45 were negative. The percentage of CD4+ FOXP3+ Treg cells in the SMC population was significantly higher compared with that noted in SMCs control group (p < 0.001) following 72 hours of coculture with miR155-mimics-transfected SMCs. In contrast, the percentage of CD4+ FOXP3+ Treg cells in the SMCs cocultured with miR155-inhibitor-transfected MSCs was significantly lower compared with that noted in SMCs control group (p < 0.001). MiR155-mimics-transfected MSCs inhibited the expression of Tbx21, Rorc, and SOCS1, while the expression of Gata3 and Foxp3 was increased. In contrast to the downregulation of the aforementioned genes, miR155-inhibitor-transfected MSCs resulted in upregulation of Tbx21, Rorc, and SOCS1 expression levels and inhibition of Gata3 and Foxp3. In the transwell assay, miR155-mimics-transfected MSCs exhibited lower levels of SMCs migration, while the miR155-inhibitor-transfected MSCs demonstrated significantly higher levels of migration, compared with the blank control group (p < 0.01, resp.). CONCLUSION: miR-155 favors the differentiation of T cells into Th2 and Treg cells in MSCs, while it inhibits the differentiation to Th1 and Th17 cells.


Assuntos
Células da Medula Óssea/metabolismo , Fatores Imunológicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Antígenos CD/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas com Domínio T/metabolismo , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores/metabolismo
9.
Clin Transplant ; 32(4): e13231, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29488658

RESUMO

BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) could exert a potent immunosuppressive effect and therefore may have a therapeutic potential in T-cell-dependent pathologies. We aimed to examine the effects of BMSCs on immune tolerance of allogeneic heart transplantation and the involvement of CD45RB+ dendritic cells (DCs). METHODS: Bone marrow-derived DCs and BMSCs were co-cultured, with CD45RB expression on the surface of DCs measured by flow cytometry. qRT-PCR and Western blotting were used to detect mRNA and protein levels. Cytometric bead array was performed to determine the serum level of IL-10. Survival time of transplanted heart and expression of CD4+ , CD8+ , IL-2, IL-4, IL-10, IFN-γ were determined. Immunofluorescence assay was employed to determine intensity of C3d and C4d. RESULTS: DCs co-cultured with BMSCs showed increased CD45RB and Foxp3 levels. CD45RB+ DCs co-cultured with T-cells CD4+ displayed increased T-cell CD4+ Foxp3 ratio and IL-10 than DCs. Both of them extended survival time of transplanted heart, decreased histopathological classification and score, intensity of C3d, C4d, proportion of CD4+ , expression levels of IL-2 and IFN-γ, and increased the CD4+ Foxp3 ratio and levels of IL-4 and IL-10. CD45RB+ DCs achieved better protective effects than DCs. CONCLUSION: BMSCs increased the expression of CD45RB in the bone marrow-derived DCs, thereby strengthening immunosuppression capacity of T cells and immune tolerance of allogeneic heart transplantation.


Assuntos
Células Dendríticas/imunologia , Sobrevivência de Enxerto/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Coração , Tolerância Imunológica/imunologia , Antígenos Comuns de Leucócito/metabolismo , Células-Tronco Mesenquimais/imunologia , Animais , Células Cultivadas , Células Dendríticas/citologia , Doença Enxerto-Hospedeiro/imunologia , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Linfócitos T Reguladores/imunologia , Transplante Homólogo
10.
Tumour Biol ; 37(8): 10909-15, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26886283

RESUMO

Fascin 1 (Fascin actin-bundling protein 1) is an actin-binding protein. Although several studies have reported the dysregulation of Fascin 1 in non-small cell lung cancer (NSCLC), its functions in the progression of NSCLC and the related molecular mechanism were not fully understood. In this study, the expression of Fascin 1 in NSCLC tissues was determined using quantitative PCR (qPCR), and the roles of Fascin 1 in the progression of NSCLC were investigated. It was found that both the messenger RNA (mRNA) level and the protein level of Fascin 1 were upregulated in NSCLC tissues. Forced expression of Fascin 1 promoted the growth and migration of NSCLC cells, while knocking down the expression of Fascin 1 inhibited the growth, migration, and tumorigenesis of NSCLC cells. Mechanism studies showed that Fascin 1 increased the transcriptional activity of the YAP/TEAD (Yes-associated protein/TEA domain transcriptional factor) complex, and knocking down the expression of Fascin 1 attenuated the expression of target genes downstream the YAP/TEAD complex. In addition, MST1 interacted with Fascin 1. Taken together, Fascin 1 plays an oncogenic role in NSCLC by activating the transcriptional activity of the YAP/TEAD complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Imunoprecipitação , Neoplasias Pulmonares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
11.
Cell Physiol Biochem ; 37(6): 2415-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26646808

RESUMO

BACKGROUND/AIMS: Bone marrow mesenchymal stem cells (MSCs) widely applied for treating myocardial infarction face survival challenges in the inflammatory and ischemia microenvironment of acute myocardial infarction. The study hypothesized that MSC-derived exosomes play a significant role in improving microenvironment after acute myocardial infarction and aimed to investigate the paracrine effects of exosomes on angiogenesis and anti-inflammatory activity. METHODS: MSCs were cultured in DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin for 48 h. MSC-derived exosomes were isolated using ExoQuick-TC. Tube formation and T-cell proliferation assays were performed to assess the angiogenic potency of MSC-derived exosomes. Acute myocardial infarction was induced in Sprague-Dawley rats, and myocardium bordering the infarcted zone was injected at four different sites with phosphate-buffered saline (PBS, control), MSC-derived exosomes, and exosome-depleted MSC culture medium. RESULTS: MSC-derived exosomes significantly enhanced the tube formation of human umbilical vein endothelial cells, impaired T-cell function by inhibiting cell proliferation in vitro, reduced infarct size, and preserved cardiac systolic and diastolic performance compared with PBS markedly enhancing the density of new functional capillary and hence blood flow recovery in rat myocardial infarction model. CONCLUSIONS: Exosomes stimulate neovascularization and restrain the inflammation response, thus improving heart function after ischemic injury.


Assuntos
Exossomos , Inflamação/prevenção & controle , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Animais , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Linfócitos T/citologia
12.
Biochem Biophys Res Commun ; 466(4): 711-6, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26365350

RESUMO

Hematopoiesis is a complex process tightly controlled by sets of transcription factors in a context-dependent and stage-specific manner. Smad2/3 transcription factor plays a central role in differentiation and survival of erythroid cells. Here we report that follistatin-like 1 (FSTL1) treatment impairs hemin-induced erythroid differentiation and cell survival. FSTL1 differentially regulates transforming growth factor beta (TGF-ß) and bone morphogenetic protein (BMP) signaling. Blockade of Smad2/3 signaling with the ALK5/type I TGF-ßR kinase inhibitor, SB-525334, was efficacious for rescue of erythroid differentiation blockage and apoptosis. Reversely, activation of Smad1/5/8 signaling with BMP4 cannot rescue FSTL1-mediated erythroid differentiation blockage and apoptosis. Collectively, these data provide mechanistic insight into the regulation of erythropoiesis by FSTL1 signaling and lay a foundation for exploring FSTL1 signaling as a therapeutic target for anemia.


Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Eritropoese/fisiologia , Proteínas Relacionadas à Folistatina/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Hemina/metabolismo , Humanos , Células K562 , Transdução de Sinais , Proteína Smad2/antagonistas & inibidores , Proteína Smad3/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
13.
Acta Biomater ; 15: 55-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25545323

RESUMO

Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.


Assuntos
Acrilatos/farmacologia , Materiais Biocompatíveis/farmacologia , Colágeno/farmacologia , Coração/fisiopatologia , Hidrogéis/farmacologia , Polietilenoglicóis/farmacologia , Regeneração/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/síntese química , Colágeno/química , Módulo de Elasticidade/efeitos dos fármacos , Feminino , Testes de Função Cardíaca , Hidrogéis/síntese química , Hidrogéis/química , Injeções , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos Sprague-Dawley , Reologia/efeitos dos fármacos , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Sus scrofa , Ultrassonografia
14.
Sci China Life Sci ; 57(2): 195-200, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24430558

RESUMO

It is still unclear whether the timing of intracoronary stem cell therapy affects the therapeutic response in patients with myocardial infarction. The natural course of healing the infarction and the presence of putative homing signals within the damaged myocardium appear to favor cell engraftment during the transendothelial passage in the early days after reperfusion. However, the adverse inflammatory environment, with its high oxidative stress, might be deleterious if cells are administered too early after reperfusion. Here we highlight several aspects of the timing of intracoronary stem cell therapy. Our results showed that transplantation of bone marrow mesenchymal stem cells at 2-4 weeks after myocardial infarction is more favorable for reduction of the scar area, inhibition of left ventricular remodeling, and recovery of heart function. Coronary injection of autologous bone marrow mesenchymal stem cells at 2-4 weeks after acute myocardial infarction is safe and does not increase the incidence of complications.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/cirurgia , Animais , Ensaio de Imunoadsorção Enzimática , Testes de Função Cardíaca , Infarto do Miocárdio/fisiopatologia , Estresse Oxidativo , Suínos , Transplante Autólogo
15.
Differentiation ; 86(1-2): 57-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23974360

RESUMO

The objective of this study was to screen mouse bone marrow mesenchymal stromal cells (BMSCs) according to expression of cardiac stem cell (CSC) surface antigens and to assess the effects of resulting BMSC-like subsets on cardiac function after injection in a mouse myocardial infarct model. BMSCs were sorted by magnetic beads according to the expression of differentiation antigens on the surface of mouse CSCs, and four subsets were identified on the basis of CD45 and CD31 expression: stem cell antigen-1+ (Sca-1+)/CD45-/CD31-, Sca-1+/CD45-/CD31+, Sca-1+/CD45+/CD31-, and Sca-1+/CD45+/CD31+. When co-cultured with myocardial stem cells and 5-aza-2'-deoxycytidine for 14 days, each subset showed expression of cardiac markers α-actin, connexin 43, desmin, and cardiac troponin I; however, expression was greatest in Sca-1+/CD45+/CD31+ cells. To assess the ability of these cells to improve cardiac function, each subset was injected separately into mice with myocardial infarct induced by ligation of the left anterior descending coronary artery, and in vivo cardiac dual inversion recovery (DIR) imaging and Doppler echocardiography were performed 48 h, 96 h, and 7 days after injection. Results indicated that Sca-1+/CD45+/CD31+ cells were superior in improving cardiac function compared with the other subsets and with unsorted BMSCs. These results suggest that mouse BMSC cells are polyclonal and that the BMSC-like Sca-1+/CD45+/CD31+ subset was effective in directing cardiac differentiation and improving cardiac function in mice with myocardial infarcts.


Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/cirurgia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
16.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(3): 210-4, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23879945

RESUMO

OBJECTIVE: To search for the bone mesenchymal stem cell (MSC) subgroup which might be more effective on repairing myocardial damage. METHODS: In this experiment, four MSC subgroups were defined based on the surface differentiation antigen detection of mouse bone mesenchymal stem cells (mBMSCs): SCA-1(+)/CD45(+)/CD31(+), SCA-1(+)/CD45(+)/CD31(-), SCA-1(+)/CD45(-)/CD31(-) and SCA-1(+)/CD45(-)/CD31(+). These subgroup cells and unselected mBMSCs were injected into infarcted mouse via tail vein. Echocardiographic heart function measurement and in vivo DiR-labeled stem cells imaging were performed at 48 h after injection. In situ C-kit (a flag antigen of cardiac stem cells) and cardiac-specific differentiation antigen immunohistochemistry detection was made in the infarcted myocardium. RESULTS: The capacity of the SCA-1(+)/CD45(+)/CD31(+) cells on improving heart function was significantly higher than other cell groups (all P < 0.05). In vivo imaging showed that the mean fluorescence intensity of the SCA-1(+)/CD45(+)/CD31(+) cells was also higher than other cell groups (all P < 0.05). Number of cardiac stem cells in the infracted myocardium was significantly increased after the injection of all subgroup cells and unsorted mBMSCs cells for 48 h compared untreated infracted myocardium. The capacity of mobilizing cardiac stem cells is as follows: SCA-1(+)/CD45(+)/CD31(+) >SCA-1(+)/CD45(-)/CD31(+) >SCA-1(+)/CD45(-)/CD31(-) >SCA-1(+)/CD45(+)/CD31(-). CONCLUSION: The SCA-1(+)/CD45(+)/CD31(+) subgroups of mBMSCs exhibites the highest capacity to improve cardiac function after myocardial infarction and to mobilize autologous cardiac stem cells compared with other mBMSCs subgroups and unsorted mBMSCs cells.


Assuntos
Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Animais , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
17.
J Surg Res ; 185(2): 896-903, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23870834

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have the potential to improve graft outcomes and promote allograft tolerance. In this study, we examined the effects and mechanism of combined intrathymic (i.t.) and intravenous (i.v.) injection of MSCs on the survival of transplanted hearts in a rat allograft model. METHODS: Recipient Sprague-Dawley rats were transplanted with hearts from Wistar rats. Wistar rat MSCs were infused via i.t. or i.v. or combined i.t. and i.v. (i.t./i.v.) injection at designated intervals. In vitro mixed lymphocyte reaction assays were performed to assess the immunosuppressive capacity of MSCs. Mesenchymal stem cell surface markers and CD4+, CD25+, and Foxp3+ T-cells in the peripheral blood were detected using flow cytometry analysis. The expression of microRNAs and cytokines in graft infiltrating lymphocytes was analyzed by real-time polymerase chain reaction. RESULTS: The MSCs cultured in vitro had multipotential differentiation capacity. Mixed lymphocyte reaction assays showed that donor-derived MSCs could not stimulate a proliferative response of recipient lymphocytes and could markedly suppress T-cell responses. Survival of the allografts was significantly prolonged by administration of i.t./i.v. injection of MSCs compared with controls, with a mean survival of 32.2 versus 6.5 d, respectively. Compared with the syngeneic groups posttransplant, miR-155 expression was significantly increased in the allogeneic group, and could be restored by injection of MSCs, especially i.t./i.v. injection of MSCs. Moreover, i.t./i.v. injection of MSCs decreased the level of interleukin (IL)-2 and interferon-gamma, but increased the levels of IL-4 and IL-10 in the allogeneic group. More important, i.t./i.v. injection of MSCs was the best way to increase the percentage of CD4+, CD25+, and Foxp3+ T-cell peripheral blood. CONCLUSIONS: Our results indicated that i.t./i.v. injection of MSCs can prolong the survival of rat cardiac allograft, which may be associated with down-regulating miR-155 expression, a shift in the Th1/Th2 balance, and up-regulation of Treg cells expression.


Assuntos
Sobrevivência de Enxerto/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , Miocárdio/citologia , Timo/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Injeções Intravenosas , Teste de Cultura Mista de Linfócitos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th2/citologia , Células Th2/imunologia , Transplante Homólogo
18.
Tumour Biol ; 34(1): 91-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22983920

RESUMO

The purposes of this study were to investigate the effects of phosphatidylethanolamine-binding protein 4 (PEBP4) on the cell growth, proliferation, apoptosis, and invasion of non-small cell lung cancer (NSCLC) cells and to provide evidence for future treatment options for NSCLC. Western blot assays were performed to examine PEBP4 protein expression levels in NSCLC cell lines (HCC827, A549, NCI-H661, NCI-H292, and 95-D) and a normal human bronchial epithelial (HBE) cell line. A PEBP4 shRNA expression vector was constructed and transfected into HCC827 cells. Subsequently, the effects of PEBP4 on the cell viability, cell cycle distribution, apoptosis levels, and invasion properties of HCC827 cells were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, flow cytometry analyses, and transwell invasion assays. In addition, the effects of PEBP4 on the expression of proteins including cyclin D1, p53, Bcl-2, MMP-2, and MMP-9 were investigated. PEBP4 was highly expressed in lung cancer cells (HCC827, A549, NCI-H661, NCI-H292, and 95-D), but its expression was low in HBE cells. Cell viability, cell proliferation, and invasion of HCC827 cells in the PEBP4 knockdown group were significantly lower than that in the negative control and blank control groups (p < 0.05), and there were no significant differences between the negative and blank control groups in terms of cell viability, cell proliferation, apoptosis, and invasion. In HCC827 cells, the expression levels of cyclin D1, Bcl-2, MMP-2, and MMP-9 in the PEBP4 knockdown group were significantly lower (p < 0.05), and the expression of p53 protein was significantly higher than that in the negative and blank control groups (p < 0.05). There were no significant differences between the negative and blank control groups in the expression levels of cyclin D1, p53, Bcl-2, MMP-2, and MMP-9. In conclusion, PEBP4 enhanced HCC827 cell proliferation and invasion ability and inhibited apoptosis. Decreased PEBP4 expression may play a role in the reduced invasion ability and increased apoptosis of the human NSCLC cell line HCC827.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ciclina D1/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/metabolismo
19.
Cancer Res ; 70(2): 782-91, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20068156

RESUMO

The E2F family member of transcription factors includes the atypical member E2F8, which has been little studied in cancer. We report that E2F8 is strongly upregulated in human hepatocellular carcinoma (HCC), where it was evidenced to contribute to oncogenesis and progression. Ectopic overexpression of E2F8 promoted cell proliferation, colony formation, and tumorigenicity, whereas E2F8 knockdown inhibited these phenotypes, as documented in Huh-7, Focus, Hep3B, and YY-8103 HCC cell lines. Mechanistic analyses indicated that E2F8 could bind to regulatory elements of cyclin D1, regulating its transcription and promoting accumulation of S-phase cells. Together, our findings suggest that E2F8 contributes to the oncogenic potential of HCC and may constitute a potential therapeutic target in this disease.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Repressoras/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Ciclina D1/biossíntese , Ciclina D1/genética , Fase G1/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Fase S/fisiologia , Transfecção , Regulação para Cima
20.
J Hepatol ; 50(2): 377-87, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19070387

RESUMO

BACKGROUND/AIMS: The hepatitis B virus X protein (HBx) has been implicated as a potential trigger of the epigenetic deregulation of some genes, but the underlying mechanisms remain unknown. The aim of this study was to identify underlying mechanisms involved in HBx-mediated epigenetic modification. METHODS: Interactions between HBx and DNA methyltransferase (DNMT) or histone deacetylase-1 (HDAC1) were assessed by co-immunoprecipitation. DNA methylation of gene promoters was detected by bisulfite sequencing, and HBx-mediated protein binding to gene regulatory elements was evaluated by chromatin immunoprecipitation. Target gene transcriptional activity was measured by real-time polymerase chain reaction. RESULTS: HBx can interact directly with DNMT3A and HDAC1. HBx recruited DNMT3A to the regulatory promoters of interleukin-4 receptor and metallothionein-1F and subsequently silenced their transcription via de novo DNA methylation. By contrast, the transcription of CDH6 and IGFBP3 was triggered by HBx through the deprivation of DNMT3A from their promoters. Transcriptional levels of target genes in hepatocellular carcinoma (HCC) specimens were strongly correlated with the occurrence of HBx. CONCLUSIONS: The interaction of HBx and DNMT3A facilitates cellular epigenetic modification (via regional hypermethylation or hypomethylation) at distinct genomic loci, providing an alternative mechanism within HBx-mediated transcriptional regulation, and a profound understanding of hepatitis and HCC pathogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferases/fisiologia , Epigênese Genética , Transativadores/fisiologia , Carcinoma Hepatocelular/etiologia , Linhagem Celular , Metilação de DNA , DNA Metiltransferase 3A , Regulação da Expressão Gênica , Hepatite B/complicações , Histona Desacetilase 1 , Histona Desacetilases/fisiologia , Humanos , Neoplasias Hepáticas/etiologia , Regiões Promotoras Genéticas , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA