Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Signal ; 17(833): eadg5678, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652761

RESUMO

Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor-α (TNF-α) released by human naïve CD4+ T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (TH1) and TH17 cells, but not that of regulatory T cells. CD4+ T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell-derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.


Assuntos
Artrite Reumatoide , Linfócitos T CD4-Positivos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Fator de Necrose Tumoral alfa , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Mitocôndrias/metabolismo , Reprogramação Metabólica
3.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506952

RESUMO

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Glutamina/metabolismo , Regulação para Cima
4.
Blood Adv ; 7(20): 6035-6047, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37276076

RESUMO

T cells demonstrate impaired function in multiple myeloma (MM) but suppressive mechanisms in the bone marrow microenvironment remain poorly defined. We observe that bone marrow CD8+ T-cell function is decreased in MM compared with controls, and is also consistently lower within bone marrow samples than in matched peripheral blood samples. These changes are accompanied by decreased mitochondrial mass and markedly elevated long-chain fatty acid uptake. In vitro modeling confirmed that uptake of bone marrow lipids suppresses CD8+ T function, which is impaired in autologous bone marrow plasma but rescued by lipid removal. Analysis of single-cell RNA-sequencing data identified expression of fatty acid transport protein 1 (FATP1) in bone marrow CD8+ T cells in MM, and FATP1 blockade also rescued CD8+ T-cell function, thereby identifying this as a novel target to augment T-cell activity in MM. Finally, analysis of samples from cohorts of patients who had received treatment identified that CD8+ T-cell metabolic dysfunction resolves in patients with MM who are responsive to treatment but not in patients with relapsed MM, and is associated with substantial T-cell functional restoration.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Medula Óssea , Linfócitos T CD8-Positivos , Microambiente Tumoral
5.
J Theor Biol ; 572: 111562, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348784

RESUMO

Chemotherapeutic drugs are used to treat almost all types of cancer, but the intended response, i.e., elimination, is often incomplete, with a subset of cancer cells resisting treatment. Two critical factors play a role in chemoresistance: the p53 tumour suppressor gene and the X-linked inhibitor of apoptosis (XIAP). These proteins have been shown to act synergistically to elicit cellular responses upon DNA damage induced by chemotherapy, yet, the mechanism is poorly understood. This study introduces a mathematical model characterising the apoptosis pathway activation by p53 before and after mitochondrial outer membrane permeabilisation upon treatment with the chemotherapy Doxorubicin (Dox). "In-silico" simulations show that the p53 dynamics change dose-dependently. Under medium to high doses of Dox, p53 concentration ultimately stabilises to a high level regardless of XIAP concentrations. However, caspase-3 activation may be triggered or not depending on the XIAP induction rate, ultimately determining whether the cell will perish or resist. Consequently, the model predicts that failure to activate apoptosis in some cancer cells expressing wild-type p53 might be due to heterogeneity between cells in upregulating the XIAP protein, rather than due to the p53 protein concentration. Our model suggests that the interplay of the p53 dynamics and the XIAP induction rate is critical to determine the cancer cells' therapeutic response.


Assuntos
Proteína Supressora de Tumor p53 , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Morte Celular , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
7.
Cell Rep ; 40(7): 111193, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977513

RESUMO

Succinate dehydrogenase (SDH) loss-of-function mutations drive succinate accumulation in tumor microenvironments, for example in the neuroendocrine tumors pheochromocytoma (PC) and paraganglioma (PG). Control of innate immune cell activity by succinate is described, but effects on T cells have not been interrogated. Here we report that exposure of human CD4+ and CD8+ T cells to tumor-associated succinate concentrations suppresses degranulation and cytokine secretion, including of the key anti-tumor cytokine interferon-γ (IFN-γ). Mechanistically, this is associated with succinate uptake-partly via the monocarboxylate transporter 1 (MCT1)-inhibition of succinyl coenzyme A synthetase activity and impaired glucose flux through the tricarboxylic acid cycle. Consistently, pharmacological and genetic interventions restoring glucose oxidation rescue T cell function. Tumor RNA-sequencing data from patients with PC and PG reveal profound suppression of IFN-γ-induced genes in SDH-deficient tumors compared with those with other mutations, supporting a role for succinate in modulating the anti-tumor immune response in vivo.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/genética , Linfócitos T CD8-Positivos , Citocinas , Glucose , Humanos , Paraganglioma/genética , Feocromocitoma/genética , Succinatos , Ácido Succínico , Microambiente Tumoral
8.
Cell Rep ; 38(5): 110320, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108535

RESUMO

The demands of cancer cell proliferation alongside an inadequate angiogenic response lead to insufficient oxygen availability in the tumor microenvironment. Within the mitochondria, oxygen is the major electron acceptor for NADH, with the result that the reducing potential produced through tricarboxylic acid (TCA) cycle activity and mitochondrial respiration are functionally linked. As the oxidizing activity of the TCA cycle is required for efficient synthesis of anabolic precursors, tumoral hypoxia could lead to a cessation of proliferation without another means of correcting the redox imbalance. We show that in hypoxic conditions, mitochondrial pyrroline 5-carboxylate reductase 1 (PYCR1) activity is increased, oxidizing NADH with the synthesis of proline as a by-product. We further show that PYCR1 activity is required for the successful maintenance of hypoxic regions by permitting continued TCA cycle activity, and that its loss leads to significantly increased hypoxia in vivo and in 3D culture, resulting in widespread cell death.


Assuntos
Proliferação de Células/fisiologia , Neoplasias/metabolismo , Oxigênio/metabolismo , Pirrolina Carboxilato Redutases/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Humanos , Mitocôndrias/metabolismo , Prolina/metabolismo , Microambiente Tumoral , delta-1-Pirrolina-5-Carboxilato Redutase
9.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34264866

RESUMO

The α-ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting ß cells in vivo. Here, we show that the deletion of PHD3 specifically in ß cells (ßPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, ßPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in ßPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the ß cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.


Assuntos
Ácidos Graxos/efeitos adversos , Glucose/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/enzimologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glicólise , Humanos , Secreção de Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/genética
10.
Amino Acids ; 53(12): 1779-1788, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34291343

RESUMO

Proline is a non-essential amino acid with key roles in protein structure/function and maintenance of cellular redox homeostasis. It is available from dietary sources, generated de novo within cells, and released from protein structures; a noteworthy source being collagen. Its catabolism within cells can generate ATP and reactive oxygen species (ROS). Recent findings suggest that proline biosynthesis and catabolism are essential processes in disease; not only due to the role in new protein synthesis as part of pathogenic processes but also due to the impact of proline metabolism on the wider metabolic network through its significant role in redox homeostasis. This is particularly clear in cancer proliferation and metastatic outgrowth. Nevertheless, the precise identity of the drivers of cellular proline catabolism and biosynthesis, and the overall cost of maintaining appropriate balance is not currently known. In this review, we explore the major drivers of proline availability and consumption at a local and systemic level with a focus on cancer. Unraveling the main factors influencing proline metabolism in normal physiology and disease will shed light on new effective treatment strategies.


Assuntos
Neoplasias/metabolismo , Prolina/metabolismo , Animais , Homeostase/fisiologia , Humanos , Oxirredução , Biossíntese de Proteínas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
Cancer Res ; 81(13): 3480-3494, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34127497

RESUMO

Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.


Assuntos
Ácido Ascórbico/farmacologia , Homeostase , Ferro/metabolismo , Mutação , Estresse Oxidativo , Succinato Desidrogenase/fisiologia , Animais , Antioxidantes/farmacologia , Dioxigenases/antagonistas & inibidores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fenótipo , Espécies Reativas de Oxigênio
12.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33848268

RESUMO

BACKGROUNDIdiopathic intracranial hypertension (IIH) is a condition predominantly affecting obese women of reproductive age. Recent evidence suggests that IIH is a disease of metabolic dysregulation, androgen excess, and an increased risk of cardiovascular morbidity. Here we evaluate systemic and adipose specific metabolic determinants of the IIH phenotype.METHODSIn fasted, matched IIH (n = 97) and control (n = 43) patients, we assessed glucose and insulin homeostasis and leptin levels. Body composition was assessed along with an interrogation of adipose tissue function via nuclear magnetic resonance metabolomics and RNA sequencing in paired omental and subcutaneous biopsies in a case-control study.RESULTSWe demonstrate an insulin- and leptin-resistant phenotype in IIH in excess of that driven by obesity. Adiposity in IIH is preferentially centripetal and is associated with increased disease activity and insulin resistance. IIH adipocytes appear transcriptionally and metabolically primed toward depot-specific lipogenesis.CONCLUSIONThese data show that IIH is a metabolic disorder in which adipose tissue dysfunction is a feature of the disease. Managing IIH as a metabolic disease could reduce disease morbidity and improve cardiovascular outcomes.FUNDINGThis study was supported by the UK NIHR (NIHR-CS-011-028), the UK Medical Research Council (MR/K015184/1), Diabetes UK, Wellcome Trust (104612/Z/14/Z), the Sir Jules Thorn Award, and the Midlands Neuroscience Teaching and Research Fund.


Assuntos
Adipócitos/metabolismo , Glicemia/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidade , Pseudotumor Cerebral , Tecido Adiposo/metabolismo , Adulto , Biópsia , Estudos de Casos e Controles , Feminino , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Pseudotumor Cerebral/metabolismo , Pseudotumor Cerebral/fisiopatologia , Adulto Jovem
13.
FASEB J ; 34(1): 303-315, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914648

RESUMO

Mutations in succinate dehydrogenase (SDH) lead to the development of tumors in a restricted subset of cell types, including chromaffin cells and paraganglia. The molecular basis for this specificity is currently unknown. We show that loss of SDH activity in a chromaffin cell model does not perturb complex I function, retaining the ability to oxidize NADH within the electron transport chain. This activity supports continued oxidation of substrates within the tricarboxylic acid (TCA) cycle. However, due to the block in the TCA cycle at SDH, the high glutamine oxidation activity is only maintained through an efflux of succinate. We also show that although the mitochondria of SDH-deficient cells are less active per se, their higher mass per cell results in an overall respiratory rate that is comparable with wild-type cells. Finally, we observed that when their mitochondria are uncoupled, SDH-deficient cells are unable to preserve their viability, suggesting that the mitochondrial metabolic network is unable to compensate when exposed to additional stress. We therefore show that in contrast to models of SDH deficiency based on epithelial cells, a chromaffin cell model retains aspects of metabolic "health," which could form the basis of cell specificity of this rare tumor type.


Assuntos
Células Cromafins/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neoplasias/metabolismo , Succinato Desidrogenase/fisiologia , Animais , Células Cromafins/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Mutação , NAD/metabolismo , Neoplasias/patologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Transcriptoma
14.
Br J Cancer ; 122(2): 150-156, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819187

RESUMO

An abundant supply of amino acids is important for cancers to sustain their proliferative drive. Alongside their direct role as substrates for protein synthesis, they can have roles in energy generation, driving the synthesis of nucleosides and maintenance of cellular redox homoeostasis. As cancer cells exist within a complex and often nutrient-poor microenvironment, they sometimes exist as part of a metabolic community, forming relationships that can be both symbiotic and parasitic. Indeed, this is particularly evident in cancers that are auxotrophic for particular amino acids. This review discusses the stromal/cancer cell relationship, by using examples to illustrate a number of different ways in which cancer cells can rely on and contribute to their microenvironment - both as a stable network and in response to therapy. In addition, it examines situations when amino acid synthesis is driven through metabolic coupling to other reactions, and synthesis is in excess of the cancer cell's proliferative demand. Finally, it highlights the understudied area of non-proteinogenic amino acids in cancer metabolism and their potential role.


Assuntos
Aminoácidos/metabolismo , Proliferação de Células/genética , Metabolismo Energético/genética , Neoplasias/metabolismo , Aminoácidos/genética , Humanos , Neoplasias/genética , Biossíntese de Proteínas/genética , Microambiente Tumoral/genética
15.
Sci Rep ; 9(1): 10473, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324817

RESUMO

Brain tumours are the most common cause of cancer death in children. Molecular studies have greatly improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding biomarker discovery and providing validation of in vivo findings. In this study, metabolites were quantified across a range of paediatric brain tumours using 1H-High-Resolution Magic Angle Spinning nuclear magnetic resonance spectroscopy (HR-MAS) and their prognostic potential investigated. HR-MAS was performed on pre-treatment frozen tumour tissue from a single centre. Univariate and multivariate Cox regression was used to examine the ability of metabolites to predict survival. The models were cross validated using C-indices and further validated by splitting the cohort into two. Higher concentrations of glutamine were predictive of a longer overall survival, whilst higher concentrations of lipids were predictive of a shorter overall survival. These metabolites were predictive independent of diagnosis, as demonstrated in multivariate Cox regression models. Whilst accurate quantification of metabolites such as glutamine in vivo is challenging, metabolites show promise as prognostic markers due to development of optimised detection methods and increasing use of 3 T clinical scanners.


Assuntos
Neoplasias Encefálicas/diagnóstico , Adolescente , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Criança , Pré-Escolar , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
16.
Clin Cancer Res ; 25(17): 5315-5328, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31182433

RESUMO

PURPOSE: Intratumoral hypoxia and immunity have been correlated with patient outcome in various tumor settings. However, these factors are not currently considered for treatment selection in head and neck cancer (HNC) due to lack of validated biomarkers. Here we sought to develop a hypoxia-immune classifier with potential application in patient prognostication and prediction of response to targeted therapy. EXPERIMENTAL DESIGN: A 54-gene hypoxia-immune signature was constructed on the basis of literature review. Gene expression was analyzed in silico using the The Cancer Genome Atlas (TCGA) HNC dataset (n = 275) and validated using two independent cohorts (n = 130 and 123). IHC was used to investigate the utility of a simplified protein signature. The spatial distribution of hypoxia and immune markers was examined using multiplex immunofluorescence staining. RESULTS: Unsupervised hierarchical clustering of TCGA dataset (development cohort) identified three patient subgroups with distinct hypoxia-immune phenotypes and survival profiles: hypoxialow/immunehigh, hypoxiahigh/immunelow, and mixed, with 5-year overall survival (OS) rates of 71%, 51%, and 49%, respectively (P = 0.0015). The prognostic relevance of the hypoxia-immune gene signature was replicated in two independent validation cohorts. Only PD-L1 and intratumoral CD3 protein expression were associated with improved OS on multivariate analysis. Hypoxialow/immunehigh and hypoxiahigh/immunelow tumors were overrepresented in "inflamed" and "immune-desert" microenvironmental profiles, respectively. Multiplex staining demonstrated an inverse correlation between CA-IX expression and prevalence of intratumoral CD3+ T cells (r = -0.5464; P = 0.0377), further corroborating the transcription-based classification. CONCLUSIONS: We developed and validated a hypoxia-immune prognostic transcriptional classifier, which may have clinical application to guide the use of hypoxia modification and targeted immunotherapies for the treatment of HNC.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Hipóxia/imunologia , Hipóxia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Hipóxia/genética , Hipóxia/patologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
17.
Sci Rep ; 8(1): 14358, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254296

RESUMO

Gliomas are highly malignant brain tumours characterised by extensive areas of poor perfusion which subsequently leads to hypoxia and reduced survival. Therapies that address the hypoxic microenvironment are likely to significantly improve patient outcomes. Verteporfin, a benzoporphyrin-like drug, has been suggested to target the Yes-associated protein (YAP). Increased YAP expression and transcriptional activity has been proposed in other tumour types to promote malignant cell survival and thus YAP-inhibitor, verteporfin, may be predicted to impact glioma cell growth and viability. Due to the extensive hypoxic nature of gliomas, we investigated the effect of hypoxia on YAP expression and found that YAP transcription is increased under these conditions. Treatment of both primary and immortalised glioblastoma cell lines with verteporfin resulted in a significant decrease in viability but strikingly only under hypoxic conditions (1% O2). We discovered that cell death occurs through a YAP-independent mechanism, predominately involving binding of free iron and likely through redox cycling, contributes to production of reactive oxygen species. This results in disruption of normal cellular processes and death in cells already under oxidative stress - such as those in hypoxia. We suggest that through repurposing verteporfin, it represents a novel means of treating highly therapy-resistant, hypoxic cells in glioma.


Assuntos
Glioma/patologia , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Verteporfina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Estresse Oxidativo/efeitos dos fármacos
18.
Sci Rep ; 8(1): 11992, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097636

RESUMO

Paediatric brain tumors are becoming well characterized due to large genomic and epigenomic studies. Metabolomics is a powerful analytical approach aiding in the characterization of tumors. This study shows that common cerebellar tumors have metabolite profiles sufficiently different to build accurate, robust diagnostic classifiers, and that the metabolite profiles can be used to assess differences in metabolism between the tumors. Tissue metabolite profiles were obtained from cerebellar ependymoma (n = 18), medulloblastoma (n = 36), pilocytic astrocytoma (n = 24) and atypical teratoid/rhabdoid tumors (n = 5) samples using HR-MAS. Quantified metabolites accurately discriminated the tumors; classification accuracies were 94% for ependymoma and medulloblastoma and 92% for pilocytic astrocytoma. Using current intraoperative examination the diagnostic accuracy was 72% for ependymoma, 90% for medulloblastoma and 89% for pilocytic astrocytoma. Elevated myo-inositol was characteristic of ependymoma whilst high taurine, phosphocholine and glycine distinguished medulloblastoma. Glutamine, hypotaurine and N-acetylaspartate (NAA) were increased in pilocytic astrocytoma. High lipids, phosphocholine and glutathione were important for separating ATRTs from medulloblastomas. This study demonstrates the ability of metabolic profiling by HR-MAS on small biopsy tissue samples to characterize these tumors. Analysis of tissue metabolite profiles has advantages in terms of minimal tissue pre-processing, short data acquisition time giving the potential to be used as part of a rapid diagnostic work-up.


Assuntos
Neoplasias Cerebelares/metabolismo , Metaboloma , Metabolômica , Fatores Etários , Neoplasias Cerebelares/diagnóstico , Criança , Biologia Computacional/métodos , Humanos , Redes e Vias Metabólicas , Metabolômica/métodos , Reprodutibilidade dos Testes , Análise Espectral
19.
Cell Rep ; 22(12): 3107-3114, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562167

RESUMO

Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1) in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1), coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA) cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma.


Assuntos
Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Mutação , Prolina/biossíntese , Pirrolina Carboxilato Redutases/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Técnicas de Silenciamento de Genes , Glutamina/metabolismo , Homeostase , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oligodendroglioma , Oxirredução , Pirrolina Carboxilato Redutases/genética , delta-1-Pirrolina-5-Carboxilato Redutase
20.
Cell Tissue Res ; 372(2): 367-378, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29450727

RESUMO

Hypoxia is a critical driver of cancer pathogenesis, directly inducing malignant phenotypes such as epithelial-mesenchymal transition, stem cell-like characteristics and metabolic transformation. However, hypoxia-associated phenotypes are often observed in cancer in the absence of hypoxia, a phenotype known as pseudohypoxia, which is very well documented in specific tumour types, including in paraganglioma/pheochromocytoma (PPGL). Approximately 40% of the PPGL tumours carry a germ line mutation in one of a number of susceptibility genes of which those that are found in succinate dehydrogenase (SDH) or in von Hippel-Lindau (VHL) genes manifest a strong pseudohypoxic phenotype. Mutations in SDH are oncogenic, forming tumours in a select subset of tissues, but the cause for this remains elusive. Although elevated succinate levels lead to increase in hypoxia-like signalling, there are other phenotypes that are being increasingly recognised in SDH-mutated PPGL, such as DNA hypermethylation. Further, recently unveiled changes in metabolic re-wiring of SDH-deficient cells might help to decipher cancer related roles of SDH in the future. In this review, we will discuss the various implications that the malfunctioning SDH can have and its impact on cancer development.


Assuntos
Hipóxia/metabolismo , Paraganglioma/metabolismo , Feocromocitoma/metabolismo , Neoplasias das Glândulas Suprarrenais , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA