Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 14(7): 582-604.e10, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37473730

RESUMO

Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Senescência Celular , DNA Topoisomerases Tipo II , Animais , DNA Topoisomerases Tipo II/genética , Senescência Celular/genética , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Dano ao DNA , Mamíferos
2.
Cell ; 159(2): 415-27, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303534

RESUMO

Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.


Assuntos
Células Epiteliais/citologia , Modelos Biológicos , Morfogênese , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Divisão Celular , Forma Celular , Embrião não Mamífero/citologia
3.
Mol Syst Biol ; 8: 568, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22294094

RESUMO

Following DNA damage, cells display complex multi-pathway signaling dynamics that connect cell-cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell-cycle re-entry and proliferation, permanent cell-cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time-resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin-induced DNA damage in the presence or absence of TNFα co-treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell-cycle regulatory responses. Two relational modeling approaches were then used to identify network-level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term 'time-interval stepwise regression.' Taken together, the results from these analysis methods revealed complex, cytokine-modulated inter-relationships among multiple signaling pathways following DNA damage, and identified an unexpected context-dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug.


Assuntos
Apoptose/genética , Dano ao DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Apoptose/fisiologia , Microambiente Celular/genética , Microambiente Celular/fisiologia , Biologia Computacional/métodos , Dano ao DNA/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Modelos Biológicos , Modelos Teóricos , Transdução de Sinais/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Biologia de Sistemas/métodos , Células Tumorais Cultivadas , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA