Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; : PDIS02230292RE, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199961

RESUMO

As soybean (Glycine max) production continues to expand in the United States and Canada, so do pathogens and pests that directly threaten soybean yield potential and economic returns for farmers. One such pathogen is the soybean cyst nematode (SCN; Heterodera glycines). SCN has traditionally been managed using SCN-resistant cultivars and rotation with nonhost crops, but the interaction of SCN with sudden death syndrome (SDS; caused by Fusarium virguliforme) in the field makes management more difficult. Nematode-protectant seed treatments have become options for SCN and SDS management. The objectives of this study were to evaluate nematode-protectant seed treatments for their effects on (i) early and full season SCN reproduction, (ii) foliar symptoms and root-rot caused by SDS, and (iii) soybean yield across environments accounting for the above factors. Using a standard protocol, field trials were implemented in 13 states and one Canadian province from 2019 to 2021 constituting 51 site-years. Six nematode-protectant seed treatment products were compared with a fungicide + insecticide base treatment and a nontreated check. Initial (at soybean planting) and final (at soybean harvest) SCN egg populations were enumerated, and SCN females were extracted from roots and counted at 30 to 35 days postplanting. Foliar disease index (FDX) and root rot caused by the SDS pathogen were evaluated, and yield data were collected for each plot. No seed treatment offered significant nematode control versus the nontreated check for in-season and full-season nematode response, no matter the initial SCN population or FDX level. Of all treatments, ILEVO (fluopyram) and Saltro (pydiflumetofen) provided more consistent increases in yield over the nontreated check in a broader range of SCN environments, even when FDX level was high.

2.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003422

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca2+ sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean-SCN interactions and offer potential targets for nematode disease management.


Assuntos
Glycine max , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/fisiologia , Transcriptoma , Perfilação da Expressão Gênica , Doenças das Plantas/genética
3.
Plant Dis ; 101(12): 2137-2143, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677377

RESUMO

A three-year study was conducted in Illinois, Indiana, Iowa, Michigan, and Ontario, Canada, from 2013 through 2015 to determine the effect of soybean (Glycine max) cultivars' source of soybean cyst nematode (SCN; Heterodera glycines) resistance on SCN population densities, sudden death syndrome (SDS; caused by Fusarium virguliforme), and yield of soybean. Five cultivars were evaluated with and without fluopyram seed treatment at each location. Cultivars with no SCN resistance had greater SDS severity, greater postharvest SCN egg counts (Pf), and lower yield than cultivars with plant introduction (PI) 548402 (Peking) and PI 88788-type of SCN resistance (P < 0.05). Cultivars with Peking-type resistance had lower Pf than those with PI 888788-type and no SCN resistance. In two locations with HG type 1.2-, cultivars with Peking-type resistance had greater foliar disease index (FDX) than cultivars with PI 88788-type. Fluopyram seed treatment reduced SDS and improved yield compared with a base seed treatment but did not affect SCN reproduction and Pf (P > 0.05). FDX and Pf were positively correlated in all three years (P < 0.01). Our results indicate that SDS severity may be influenced by SCN population density and HG type, which are important to consider when selecting cultivars for SCN management.


Assuntos
Glycine max , Sementes , Animais , Benzamidas/farmacologia , Resistência à Doença/genética , Fusarium/fisiologia , Nematoides/fisiologia , América do Norte , Doenças das Plantas/prevenção & controle , Densidade Demográfica , Piridinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/microbiologia , Sementes/parasitologia , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Glycine max/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA