Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 282, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609414

RESUMO

Neuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1ß and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1ß and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions. Chemokines also play a central role in neuroinflammation by controlling inflammatory cell trafficking. Our aim was to characterise the evolution of early neuroinflammation in the neonatal piglet model of hypoxic-ischemic encephalopathy (HIE). Piglets (< 24 h old) were exposed to HI insult, and recovered to 2, 4, 8, 12 or 24H post-insult. Brain tissue from the frontal cortex and basal ganglia was harvested for assessment of glial cell activation profiles and transcription levels of inflammatory markers in HI piglets with comparison to a control group of newborn piglets. Fluorescence microscopy was used to observe microglia, astrocytes, neurons, degenerating neurons and possibly apoptotic cells, and quantitative polymerase chain reaction was used to measure gene expression of several cytokines and chemokines. HI injury was associated with microglial activation and morphological changes to astrocytes at all time points examined. Gene expression analyses of inflammation-related markers revealed significantly higher expression of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin 1 beta (IL-1ß), chemokines cxc-chemokine motif ligand (CXCL)8 and CXCL10, and anti-inflammatory cytokine transforming growth factor (TGF)ß in every HI group, with some region-specific differences noted. No significant difference was observed in the level of C-X-C chemokine receptor (CCR)5 over time. This high degree of neuroinflammation was associated with a reduction in the number of neurons in piglets at 12H and 24H in the frontal cortex, and the putamen at 12H. This reduction of neurons was not associated with increased numbers of degenerating neurons or potentially apoptotic cells. HI injury triggered a robust early neuroinflammatory response associated with a reduction in neurons in cortical and subcortical regions in our piglet model of HIE. This neuroinflammatory response may be targeted using novel therapeutics to reduce neuropathology in our piglet model of neonatal HIE.


Assuntos
Citocinas , Hipóxia-Isquemia Encefálica , Animais , Suínos , Citocinas/metabolismo , Animais Recém-Nascidos , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Neuroglia/metabolismo , Encéfalo/metabolismo , Hipóxia/metabolismo , Microglia/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Fator de Crescimento Transformador beta/metabolismo , Inflamação/patologia
2.
Pediatr Res ; 92(1): 25-31, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34482377

RESUMO

BACKGROUND: The objective of this study was to systematically review the literature to determine the effect of combined hypothermia (HTH) and mesenchymal stem cell (MSC) therapy (administered during or immediately before or after HTH) compared with HTH alone on brain injury and neurobehavioural outcomes in animal models of neonatal hypoxic-ischaemic encephalopathy. METHODS: Primary outcomes assessed were neuropathological measures and neurobehavioural measures of brain outcome. Secondary outcomes were brain protein proinflammatory cytokine status. Risk of bias (ROB) was assessed with the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) ROB assessment tool. RESULTS: Of 393 studies identified, 3 studies in postnatal day 7 (P7) male Sprague-Dawley rats met the inclusion criteria. Meta-analyses were undertaken for neuropathological measures (apoptotic cells, astrocytes, microglia), neurobehavioral measures (rotarod test and negative geotaxis), and proinflammatory cytokine levels. Two of the three studies scored low or unclear ROB across all measures. Treatment with HTH-MSCs together significantly improved astrocyte optical density by standardised mean difference (SMD) of 0.71 [95% confidence interval (CI) -1.14, -0.28]. No other measures showed significant differences. CONCLUSIONS: There is insufficient preclinical data to confirm the efficacy of combined HTH-MSC therapy over HTH alone. Future studies should utilise a reporting checklist such as in SYRCLE or Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines to improve reporting standards. IMPACT: Very few articles investigating the use of MSCs for the treatment of hypoxic-ischaemic encephalopathy are clinically relevant. Continuing to publish studies in models of hypoxic-ischaemic encephalopathy without the inclusion of HTH therapy does not progress the field towards improved clinical outcomes. This study shows that HTH and MSC therapy improves measures of astrogliosis. More studies are required to establish the efficacy of HTH and MSCs on measures of neuropathology and neurobehavior. The reporting of preclinical data in this space could be improved by using reporting checklists such as the SYRCLE or ARRIVE tools.


Assuntos
Hipotermia , Hipóxia-Isquemia Encefálica , Células-Tronco Mesenquimais , Animais , Citocinas , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/terapia , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA