Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 150: 113094, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658242

RESUMO

All five muscarinic receptors have important physiological roles. The endothelial M2 and M3 subtypes regulate arterial tone through direct coupling to Gq or Gi/o proteins. Yet, we lack selective pharmacological drugs to assess the respective contribution of muscarinic receptors to a given function. We used mamba snake venoms to identify a selective M2R ligand to investigate its contribution to arterial contractions. Using a bio-guided screening binding assay, we isolated MT9 from the black mamba venom, a three-finger toxin active on the M2R subtype. After sequencing and chemical synthesis of MT9, we characterized its structure by X-ray diffraction and determined its pharmacological characteristics by binding assays, functional tests, and ex vivo experiments on rat and human arteries. Although MT9 belongs to the three-finger fold toxins family, it is phylogenetically apart from the previously discovered muscarinic toxins, suggesting that two groups of peptides evolved independently and in a convergent way to target muscarinic receptors. The affinity of MT9 for the M2R is 100 times stronger than that for the four other muscarinic receptors. It also antagonizes the M2R/Gi pathways in cell-based assays. MT9 acts as a non-competitive antagonist against acetylcholine or arecaine, with low nM potency, for the activation of isolated rat mesenteric arteries. These results were confirmed on human internal mammary arteries. In conclusion, MT9 is the first fully characterized M2R-specific natural toxin. It should provide a tool for further understanding of the effect of M2R in various arteries and may position itself as a new drug candidate in cardio-vascular diseases.


Assuntos
Dendroaspis , Toxinas Biológicas , Animais , Artérias/metabolismo , Colinérgicos , Dendroaspis/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Humanos , Peptídeos/farmacologia , Ratos , Receptores Muscarínicos/metabolismo
2.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742123

RESUMO

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator 1 de Ribosilação do ADP/metabolismo , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Células HeLa , Humanos , Bicamadas Lipídicas , Glicoproteínas de Membrana/metabolismo , Nucleotídeos , Domínios de Homologia à Plecstrina/fisiologia , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
3.
Bioconjug Chem ; 27(10): 2407-2417, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27564088

RESUMO

In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.


Assuntos
Metaloproteinase 12 da Matriz/análise , Imagem Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animais , Carbocianinas , Técnicas de Química Sintética , Cristalografia por Raios X , Células HeLa , Humanos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Sondas Moleculares/farmacocinética , Óptica e Fotônica/métodos , Peptídeos/química , Distribuição Tecidual
4.
Eur J Med Chem ; 111: 193-201, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26871660

RESUMO

Hodgkin's lymphoma (HL) is the most common malignant lymphoma in young adults in the western world. This disease is characterized by an overexpression of ADAM-10 with increased release of NKG2D ligands, involved in an impaired immune response against tumor cells. We designed and synthesized two new ADAM-10 selective inhibitors, 2 and 3 based on previously published ADAM-17 selective inhibitor 1. The most promising compound was the thiazolidine derivative 3, with nanomolar activity for ADAM-10, high selectivity over ADAM-17 and MMPs and good efficacy in reducing the shedding of NKG2D ligands (MIC-B and ULBP3) in three different HL cell lines at non-toxic doses. Molecular modeling studies were used to drive the design and X-ray crystallography studies were carried out to explain the selectivity of 3 for ADAM-10 over MMPs.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Doença de Hodgkin/enzimologia , Doença de Hodgkin/patologia , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
5.
J Biol Chem ; 291(6): 2616-29, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26680001

RESUMO

Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Venenos Elapídicos , Peptídeos , Canais Iônicos Sensíveis a Ácido/genética , Animais , Venenos Elapídicos/síntese química , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Oócitos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Xenopus laevis
6.
J Enzyme Inhib Med Chem ; 31(5): 824-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26235916

RESUMO

Transthyretin (TTR) is a 54 kDa homotetrameric protein that transports thyroxine (T4) and retinol (vitamin A), through its association with retinol binding protein (RBP). Under unknown conditions, it aggregates to form fibrils associated with TTR amyloidosis. Ligands able to inhibit fibril formation have been studied by X-ray crystallography. The use of polyethylene glycol (PEG) instead of ammonium sulphate or citrate has been evaluated as an alternative to obtain new TTR complexes with (R)-3-(9-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide (48R(1)) and 2-(9H-fluoren-9-ylideneaminooxy) acetic acid (ES8(2)). The previously described fluorenyl based inhibitors (S)-3-((9H-fluoren-9-ylideneamino)oxy)-2-methylpropanoic acid (6BD) and 3-((9H-fluoren-9-ylideneamino)oxy)propanoic acid (7BD) have been re-evaluated with the changed crystallization method. The new TTR complexes with compounds of the same family show that the 9-fluorenyl motif can occupy alternative hydrophobic binding sites. This augments the potential use of this scaffold to yield a large variety of differently substituted mono-aryl compounds able to inhibit TTR fibril formation.


Assuntos
Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Cristalografia por Raios X/métodos , Fluorenos/química , Modelos Moleculares , Pré-Albumina/química , Pré-Albumina/metabolismo , Motivos de Aminoácidos , Fluorenos/farmacologia , Estrutura Molecular , Polietilenoglicóis/química
7.
N Biotechnol ; 32(1): 54-64, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25224922

RESUMO

Crystallographic structure determination of protein-ligand complexes of transthyretin (TTR) has been hindered by the low affinity of many compounds that bind to the central cavity of the tetramer. Because crystallization trials are carried out at protein and ligand concentration that approach the millimolar range, low affinity is less of a problem than the poor solubility of many compounds that have been shown to inhibit amyloid fibril formation. To achieve complete occupancy in co-crystallization experiments, the minimal requirement is one ligand for each of the two sites within the TTR tetramer. Here we present a new strategy for the co-crystallization of TTR using high molecular weight polyethylene glycol instead of high ionic strength precipitants, with ligands solubilized in multicomponent mixtures of compounds. This strategy is applied to the crystallization of TTR complexes with curcumin and 16α-bromo-estradiol. Here we report the crystal structures with these compounds and with the ferulic acid that results from curcumin degradation.


Assuntos
Curcumina/química , Estradiol/análogos & derivados , Pré-Albumina/química , Ácidos Cumáricos/química , Crioprotetores/farmacologia , Cristalização , Cristalografia por Raios X , Estradiol/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Solubilidade , Soluções , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA