Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 114(1): 1, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30443679

RESUMO

Monocytes are involved in adverse left ventricular (LV) remodelling following myocardial infarction (MI). To provide therapeutic opportunities we aimed to identify gene transcripts in monocytes that relate to post-MI healing and evaluated intervention with the observed gene activity in a rat MI model. In 51 MI patients treated by primary percutaneous coronary intervention (PCI), the change in LV end-diastolic volume index (EDVi) from baseline to 4-month follow-up was assessed using cardiovascular magnetic resonance imaging (CMR). Circulating monocytes were collected at day 5 (Arterioscler Thromb Vasc Biol 35:1066-1070, 2015; Cell Stem Cell 16:477-487, 2015; Curr Med Chem 13:1877-1893, 2006) after primary PCI for transcriptome analysis. Transcriptional profiling and pathway analysis revealed that patients with a decreased LV EDVi showed an induction of type I interferon (IFN) signalling (type I IFN pathway: P value < 0.001; false discovery rate < 0.001). We subsequently administered 15,000 Units of IFN-α subcutaneously in a rat MI model for three consecutive days following MI. Cardiac function was measured using echocardiography and infarct size/cardiac inflammation using (immuno)-histochemical analysis. We found that IFN-α application deteriorated ventricular dilatation and increased infarct size at day 28 post-MI. Moreover, IFN-α changed the peripheral monocyte subset distribution towards the pro-inflammatory monocyte subset whereas in the myocardium, the presence of the alternative macrophage subset was increased at day 3 post-MI. Our findings suggest that induction of type I IFN signalling in human monocytes coincides with adverse LV remodelling. In rats, however, IFN-α administration deteriorated post-MI healing. These findings underscore important but also contradictory roles for the type I IFN response during cardiac healing following MI.


Assuntos
Interferon Tipo I/metabolismo , Monócitos/transplante , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Remodelação Ventricular , Adulto , Idoso , Animais , Transplante de Medula Óssea/métodos , Feminino , Humanos , Interferon Tipo I/farmacologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Remodelação Ventricular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
2.
Am J Physiol Heart Circ Physiol ; 311(5): H1097-H1107, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521422

RESUMO

Excess catecholamine levels are suggested to be cardiotoxic and to underlie stress-induced heart failure. The cardiotoxic effects of norepinephrine and epinephrine are well recognized. However, although cardiac and circulating dopamine levels are also increased in stress cardiomyopathy patients, knowledge regarding putative toxic effects of excess dopamine levels on cardiomyocytes is scarce. We now studied the effects of elevated dopamine levels in H9c2 cardiomyoblasts. H9c2 cells were cultured and treated with dopamine (200 µM) for 6, 24, and 48 h. Subsequently, the effects on lipid accumulation, cell viability, flippase activity, reactive oxygen species (ROS) production, subcellular NADPH oxidase (NOX) protein expression, and ATP/ADP and GTP/GDP levels were analyzed. Dopamine did not result in cytotoxic effects after 6 h. However, after 24 and 48 h dopamine treatment induced a significant increase in lipid accumulation, nitrotyrosine levels, indicative of ROS production, and cell death. In addition, dopamine significantly reduced flippase activity and ATP/GTP levels, coinciding with phosphatidylserine exposure on the outer plasma membrane. Furthermore, dopamine induced a transient increase in cytoplasmic and (peri)nucleus NOX1 and NOX4 expression after 24 h that subsided after 48 h. Moreover, while dopamine induced a similar transient increase in cytoplasmic NOX2 and p47phox expression, in the (peri)nucleus this increased expression persisted for 48 h where it colocalized with ROS. Exposure of H9c2 cells to elevated dopamine levels induced lipid accumulation, oxidative stress, and a proinflammatory status of the plasma membrane. This can, in part, explain the inflammatory response in patients with stress-induced heart failure.


Assuntos
Dopaminérgicos/farmacologia , Dopamina/farmacologia , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , NADPH Oxidases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular , Citometria de Fluxo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Microscopia de Fluorescência , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/ultraestrutura , NADH NADPH Oxirredutases/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Peroxidase/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Tirosina/análogos & derivados , Tirosina/efeitos dos fármacos , Tirosina/metabolismo
3.
Int J Mol Sci ; 16(12): 29583-91, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690421

RESUMO

To diminish heart failure development after acute myocardial infarction (AMI), several preclinical studies have focused on influencing the inflammatory processes in the healing response post-AMI. The initial purpose of this healing response is to clear cell debris of the injured cardiac tissue and to eventually resolve inflammation and support scar tissue formation. This is a well-balanced reaction. However, excess inflammation can lead to infarct expansion, adverse ventricular remodeling and thereby propagate heart failure development. Different macrophage subtypes are centrally involved in both the promotion and resolution phase of inflammation. Modulation of macrophage subset polarization has been described to greatly affect the quality and outcome of healing after AMI. Therefore, it is of great interest to reveal the process of macrophage polarization to support the development of therapeutic targets. The current review summarizes (pre)clinical studies that demonstrate essential molecules involved in macrophage polarization that can be modulated and influence cardiac healing after AMI.


Assuntos
Macrófagos/fisiologia , Infarto do Miocárdio/imunologia , Animais , Polaridade Celular , Citocinas/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/patologia , Proteínas do Tecido Nervoso/metabolismo , Regeneração , Transdução de Sinais , Remodelação Ventricular
4.
Eur Heart J ; 35(6): 376-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23966310

RESUMO

AIMS: Monocytes are critical mediators of healing following acute myocardial infarction (AMI), making them an interesting target to improve myocardial repair. The purpose of this study was a gain of insight into the source and recruitment of monocytes following AMI in humans. METHODS AND RESULTS: Post-mortem tissue specimens of myocardium, spleen and bone marrow were collected from 28 patients who died at different time points after AMI. Twelve patients who died from other causes served as controls. The presence and localization of monocytes (CD14(+) cells), and their CD14(+)CD16(-) and CD14(+)CD16(+) subsets, were evaluated by immunohistochemical and immunofluorescence analyses. CD14(+) cells localized at distinct regions of the infarcted myocardium in different phases of healing following AMI. In the inflammatory phase after AMI, CD14(+) cells were predominantly located in the infarct border zone, adjacent to cardiomyocytes, and consisted for 85% (78-92%) of CD14(+)CD16(-) cells. In contrast, in the subsequent post-AMI proliferative phase, massive accumulation of CD14(+) cells was observed in the infarct core, containing comparable proportions of both the CD14(+)CD16(-) [60% (31-67%)] and CD14(+)CD16(+) subsets [40% (33-69%)]. Importantly, in AMI patients, of the number of CD14(+) cells was decreased by 39% in the bone marrow and by 58% in the spleen, in comparison with control patients (P = 0.02 and <0.001, respectively). CONCLUSIONS: Overall, this study showed a unique spatiotemporal pattern of monocyte accumulation in the human myocardium following AMI that coincides with a marked depletion of monocytes from the spleen, suggesting that the human spleen contains an important reservoir function for monocytes.


Assuntos
Monócitos/fisiologia , Infarto do Miocárdio/patologia , Baço/fisiologia , Idoso , Antígenos CD/metabolismo , Células da Medula Óssea/fisiologia , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Masculino , Monócitos/classificação , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Baço/imunologia
5.
Mol Cell Biol ; 32(17): 3392-402, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733991

RESUMO

Controlled renewal of the epithelium with precise cell distribution and gene expression patterns is essential for colonic function. GATA6 is expressed in the colonic epithelium, but its function in the colon is currently unknown. To define GATA6 function in the colon, we conditionally deleted Gata6 throughout the epithelium of small and large intestines of adult mice. In the colon, Gata6 deletion resulted in shorter, wider crypts, a decrease in proliferation, and a delayed crypt-to-surface epithelial migration rate. Staining techniques and electron microscopy indicated deficient maturation of goblet cells, and coimmunofluorescence demonstrated alterations in specific hormones produced by the endocrine L cells and serotonin-producing cells. Specific colonocyte genes were significantly downregulated. In LS174T, the colonic adenocarcinoma cell line, Gata6 knockdown resulted in a significant downregulation of a similar subset of goblet cell and colonocyte genes, and GATA6 was found to occupy active loci in enhancers and promoters of some of these genes, suggesting that they are direct targets of GATA6. These data demonstrate that GATA6 is necessary for proliferation, migration, lineage maturation, and gene expression in the mature colonic epithelium.


Assuntos
Colo/citologia , Colo/metabolismo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Colo/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Mucosa Intestinal/ultraestrutura , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA