Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762177

RESUMO

Antimicrobial resistance poses a serious threat to human health worldwide and its incidence continues to increase owing to the overuse of antibiotics and other factors. Macrolide antibiotics such as erythromycin (EM) have immunomodulatory effects in addition to their antibacterial activity. Long-term, low-dose administration of macrolides has shown clinical benefits in treating non-infectious inflammatory respiratory diseases. However, this practice may also increase the emergence of drug-resistant bacteria. In this study, we synthesized a series of EM derivatives, and screened them for two criteria: (i) lack of antibacterial activity and (ii) ability to suppress tumor necrosis factor-α (TNF-α) production in THP-1 cells stimulated with lipopolysaccharide. Among the 37 synthesized derivatives, we identified a novel 12-membered ring macrolide EM982 that lacked antibacterial activity against Staphylococcus aureus and suppressed the production of TNF-α and other cytokines. The effects of EM982 on Toll-like receptor 4 (TLR4) signaling were analyzed using a reporter assay and Western blotting. The reporter assay showed that EM982 suppressed the activation of transcription factors, NF-κB and/or activator protein 1 (AP-1), in HEK293 cells expressing human TLR4. Western blotting showed that EM982 inhibited the phosphorylation of both IκB kinase (IKK) ß and IκBα, which function upstream of NF-κB, whereas it did not affect the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which act upstream of AP-1. These results suggest that EM982 suppresses cytokine production by inhibiting phosphorylation of IKKß and IκBα, resulting in the inactivation of NF-κB.


Assuntos
Citocinas , Quinase I-kappa B , Inibidor de NF-kappaB alfa , Humanos , Quinase I-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Citocinas/metabolismo , Eritromicina/farmacologia , Eritromicina/química , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Macrolídeos/farmacologia , Macrolídeos/química , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
2.
Microbiol Immunol ; 68(1): 23-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975515

RESUMO

Pneumococcus is themajor cause of bacterial and invasive pneumococcal infections. Disrupting the alveolarepithelial barrier is an important step in the pathogenesis of invasivepneumococcal infections. The epidermal growth factor receptor (EGFR) maintainsthe integrity of the alveolar epithelial barrier. In this study, we showed that secretory pneumococcal molecules decrease the molecular weight of EGFR without peptide degradation and inhibit alveolar epithelial cell proliferation via EGFR.


Assuntos
Células Epiteliais Alveolares , Streptococcus pneumoniae , Células Epiteliais Alveolares/metabolismo , Peso Molecular , Receptores ErbB , Proliferação de Células , Células Epiteliais/metabolismo
3.
J Biol Chem ; 299(6): 104760, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119853

RESUMO

Pneumococcus is the main cause of bacterial pneumonia. Pneumococcal infection has been shown to cause elastase, an intracellular host defense factor, to leak from neutrophils. However, when neutrophil elastase (NE) leaks extracellularly, it can degrade host cell surface proteins such as epidermal growth factor receptor (EGFR) and potentially disrupt the alveolar epithelial barrier. In this study, we hypothesized that NE degrades the extracellular domain (ECD) of EGFR in alveolar epithelial cells and inhibits alveolar epithelial repair. Using SDS-PAGE, we showed that NE degraded the recombinant EGFR ECD and its ligand epidermal growth factor, and that the degradation of these proteins was counteracted by NE inhibitors. Furthermore, we confirmed the degradation by NE of EGFR expressed in alveolar epithelial cells in vitro. We showed that intracellular uptake of epidermal growth factor and EGFR signaling was downregulated in alveolar epithelial cells exposed to NE and found that cell proliferation was inhibited in these cells These negative effects of NE on cell proliferation were abolished by NE inhibitors. Finally, we confirmed the degradation of EGFR by NE in vivo. Fragments of EGFR ECD were detected in bronchoalveolar lavage fluid from pneumococcal pneumonia mice, and the percentage of cells positive for a cell proliferation marker Ki67 in lung tissue was reduced. In contrast, administration of an NE inhibitor decreased EGFR fragments in bronchoalveolar lavage fluid and increased the percentage of Ki67-positive cells. These findings suggest that degradation of EGFR by NE could inhibit the repair of alveolar epithelium and cause severe pneumonia.


Assuntos
Receptores ErbB , Elastase de Leucócito , Pneumonia Pneumocócica , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Antígeno Ki-67/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pneumonia Pneumocócica/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo
4.
Microbiol Immunol ; 67(2): 99-104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461153

RESUMO

Two plasminogen binding proteins were identified from a mouse infected with Streptococcus pneumoniae. The pneumococcal proteins were annotated as ATP-dependent Clp protease ATP-binding subunit (ClpC) and excinuclease ABC subunit C (UvrC) using the isobaric tags for relative and absolute quantification (iTRAQ) method. Recombinants of both proteins showed significant binding to plasminogen and were found to promote plasminogen activation by tissue-type plasminogen activator. In addition, ClpC and UvrC were LytA-dependently released into the culture supernatant and bound to the bacterial surface. These results suggest that S. pneumoniae releases ClpC and UvrC by autolysis and recruits them to the bacterial surface, where they bind to plasminogen and promote its activation, contributing to extracellular matrix degradation and tissue invasion.


Assuntos
Proteínas de Bactérias , Endopeptidase Clp , Plasminogênio , Streptococcus pneumoniae , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Streptococcus pneumoniae/metabolismo , Interações Hospedeiro-Patógeno , Endopeptidase Clp/metabolismo
5.
J Clin Med ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36294410

RESUMO

Tissue-specific stem cells exist in tissues and organs, such as skin and bone marrow. However, their pluripotency is limited compared to embryonic stem cells. Culturing primary cells on plastic tissue culture dishes can result in the loss of multipotency, because of the inability of tissue-specific stem cells to survive in feeder-less dishes. Recent findings suggest that culturing primary cells in medium containing feeder cells, particularly genetically modified feeder cells expressing growth factors, may be beneficial for their survival and proliferation. Therefore, the aim of this study was to elucidate the role of genetically modified human feeder cells expressing growth factors in maintaining the integrity of primary cultured human deciduous dental pulp cells. Feeder cells expressing leukemia inhibitory factor, bone morphogenetic protein 4, and basic fibroblast growth factor were successfully engineered, as evidenced by PCR. Co-culturing with mitomycin-C-treated feeder cells enhanced the proliferation of newly isolated human deciduous dental pulp cells, promoted their differentiation into adipocytes and neurons, and maintained their stemness properties. Our findings suggest that genetically modified human feeder cells may be used to maintain the integrity of primary cultured human deciduous dental pulp cells.

6.
Antibiotics (Basel) ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34943762

RESUMO

Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.

7.
Sci Rep ; 11(1): 2432, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510372

RESUMO

Bacterial and viral respiratory infections can initiate acute lung injury and acute respiratory distress syndrome. Neutrophils and their granule enzymes, including neutrophil elastase, are key mediators of the pathophysiology of acute respiratory failure. Although intracellular neutrophil elastase functions as a host defensive factor against pathogens, its leakage into airway spaces induces degradation of host connective tissue components. This leakage disrupts host innate immune responses via proteolytic cleavage of Toll-like receptors and cytokines. Here, we investigated whether neutrophils possess proteases that cleave adaptive immune molecules. We found that expression of the human leukocyte antigen (HLA) class II molecule HLA-DP ß1 was decreased in THP-1-derived macrophages treated with supernatants from dead neutrophils. This decreased HLA-DP ß1 expression was counteracted by treatment with neutrophil elastase inhibitor, suggesting proteolytic cleavage of HLA-DP ß1 by neutrophil elastase. SDS-PAGE showed that neutrophil elastase cleaved recombinant HLA-DP α1, -DP ß1, -DQ α1, -DQ ß1, -DR α, and -DR ß1. Neutrophil elastase also cleaved HLA-DP ß1 on extracellular vesicles isolated from macrophages without triggering morphological changes. Thus, leakage of neutrophil elastase may disrupt innate immune responses, antigen presentation, and T cell activation. Additionally, inhibition of neutrophil elastase is a potential therapeutic option for treating bacterial and viral pneumonia.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Elastase de Leucócito/metabolismo , Pneumonia Pneumocócica/metabolismo , Proteólise , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/fisiologia , Células THP-1 , Traqueia/microbiologia
8.
Arch Oral Biol ; 121: 104956, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157493

RESUMO

OBJECTIVE: Rice peptide has antibacterial properties that have been tested in planktonic bacterial culture. However, bacteria form biofilm at disease sites and are resistant to antibacterial agents. The aim of this study was to clarify the mechanisms of action of rice peptide and its amino acid substitution against periodontopathic bacteria and their antibiofilm effects. DESIGN: Porphyromonas gingivalis and Fusobacterium nucleatum were treated with AmyI-1-18 rice peptide or its arginine-substituted analog, G12R, under anaerobic conditions. The amount of biofilm was evaluated by crystal violet staining. The integrity of the bacteria cytoplasmic membrane was studied in a propidium iodide (PI) stain assay and transmission electron microscopy (TEM). RESULTS: Both AmyI-1-18 and G12R inhibited biofilm formation of P. gingivalis and F. nucleatum; in particular, G12R inhibited F. nucleatum at lower concentrations. However, neither peptide eradicated established biofilms significantly. According to the minimum inhibitory concentration and minimum bactericidal concentration against P. gingivalis, AmyI-1-18 has bacteriostatic properties and G12R has bactericidal activity, and both peptides showed bactericidal activity against F. nucleatum. PI staining and TEM analysis indicated that membrane disruption by G12R was enhanced, which suggests that the replacement amino acid reinforced the electostatic interaction between the peptide and bacteria by increase of cationic charge and α-helix content. CONCLUSIONS: Rice peptide inhibited biofilm formation of P. gingivalis and F. nucleatum, and bactericidal activity via membrane destruction was enhanced by amino acid substitution.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Oryza/química , Peptídeos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Substituição de Aminoácidos , Fusobacterium nucleatum/crescimento & desenvolvimento , Proteínas de Plantas/farmacologia , Porphyromonas gingivalis/crescimento & desenvolvimento
9.
BMC Microbiol ; 20(1): 361, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238885

RESUMO

BACKGROUND: Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva. RESULTS: The biofilm, composed mainly of the genus Streptococcus and containing 50 µM of sulfated vizantin, detached significantly from its basal surface with rotation at 500 rpm for only 15 s, even when 0.2% sucrose was supplied. Expression analyses for genes associated with biofilm formation and bacterial adhesion following identification of the Streptococcus species, revealed that a variety of Streptococcus species in a cariogenic biofilm showed downregulation of genes encoding glucosyltransferases involved in the biosynthesis of water-soluble glucan. The expression of some genes encoding surface proteins was also downregulated. Of the two quorum sensing systems involved in the genus Streptococcus, the expression of luxS in three species, Streptococcus oralis, Streptococcus gordonii, and Streptococcus mutans, was significantly downregulated in the presence of 50 µM sulfated vizantin. Biofilm detachment may be facilitated by the reduced structural stability due to these modulations. As a non-specific reaction, 50 µM sulfated vizantin decreased cell surface hydrophobicity by binding to the cell surface, resulting in reduced bacterial adherence. CONCLUSION: Sulfated vizantin may be a candidate for a new antibiofilm strategy targeting the biofilm matrix while preserving the resident microflora.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Glicolipídeos/farmacologia , Streptococcus/fisiologia , Trealose/análogos & derivados , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Células Epiteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Gengivite/microbiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicolipídeos/química , Humanos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Streptococcus/classificação , Streptococcus/efeitos dos fármacos , Streptococcus/crescimento & desenvolvimento , Sulfatos/química , Trealose/química , Trealose/farmacologia
10.
PLoS One ; 15(10): e0240329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057343

RESUMO

Streptococcus pneumoniae is often isolated from patients with community-acquired pneumonia. Antibiotics are the primary line of treatment for pneumococcal pneumonia; however, rising antimicrobial resistance is becoming more prevalent. Hinokitiol, which is isolated from trees in the cypress family, has been demonstrated to exert antibacterial activity against S. pneumoniae in vitro regardless of antimicrobial resistance. In this study, the efficacy of hinokitiol was investigated in a mouse pneumonia model. Male 8-week-old BALB/c mice were intratracheally infected with S. pneumoniae strains D39 (antimicrobial susceptible) and NU4471 (macrolide resistant). After 1 h, hinokitiol was injected via the tracheal route. Hinokitiol significantly decreased the number of S. pneumoniae in the bronchoalveolar lavage fluid (BALF) and the concentration of pneumococcal DNA in the serum, regardless of whether bacteria were resistant or susceptible to macrolides. In addition, hinokitiol decreased the infiltration of neutrophils in the lungs, as well as the concentration of inflammatory cytokines in the BALF and serum. Repeated hinokitiol injection at 18 h intervals showed downward trend in the number of S. pneumoniae in the BALF and the concentration of S. pneumoniae DNA in the serum with the number of hinokitiol administrations. These findings suggest that hinokitiol reduced bacterial load and suppressed excessive host immune response in the pneumonia mouse model. Accordingly, hinokitiol warrants further exploration as a potential candidate for the treatment of pneumococcal pneumonia.


Assuntos
Anti-Infecciosos/farmacologia , Monoterpenos/farmacologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae/isolamento & purificação , Tropolona/análogos & derivados , Animais , Anti-Infecciosos/uso terapêutico , Líquido da Lavagem Broncoalveolar/microbiologia , Quimiocina CXCL1/sangue , Quimiocina CXCL1/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Farmacorresistência Bacteriana , Interleucina-6/sangue , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monoterpenos/uso terapêutico , Infiltração de Neutrófilos , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/patogenicidade , Tropolona/farmacologia , Tropolona/uso terapêutico
11.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603314

RESUMO

Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner. Whereas ERM (but not other antibiotics, such as josamycin and penicillin) protected against lethal pulmonary inflammation and inflammatory periodontal bone loss, these protective effects of ERM were abolished in Del1-deficient mice. By interacting with the growth hormone secretagogue receptor and activating JAK2 in human lung microvascular endothelial cells, ERM induced DEL-1 transcription that was mediated by MAPK p38 and was CCAAT/enhancer binding protein-ß dependent. Moreover, ERM reversed IL-17-induced inhibition of DEL-1 transcription, in a manner that was dependent not only on JAK2 but also on PI3K/AKT signaling. Because DEL-1 levels are severely reduced in inflammatory conditions and with aging, the ability of ERM to upregulate DEL-1 may lead to a novel approach for the treatment of inflammatory and aging-related diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular/fisiologia , Eritromicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Periodontite/tratamento farmacológico , Pneumonia/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Fármacos Gastrointestinais/farmacologia , Interleucina-17/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Periodontite/etiologia , Periodontite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/etiologia , Pneumonia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-31482074

RESUMO

Streptococcus pneumoniae is a Gram-positive bacterium belonging to the oral streptococcus species, mitis group. This pathogen is a leading cause of community-acquired pneumonia, which often evades host immunity and causes systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a ß-helical cell surface protein contributing to pneumococcal adhesion to and invasion of human epithelial cells in addition to its survival in blood. In the present study, we investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis indicated that the pfbA gene is highly conserved in S. pneumoniae and Streptococcus pseudopneumoniae within the mitis group. Our in vitro assays showed that PfbA inhibits neutrophil phagocytosis, leading to pneumococcal survival. We found that PfbA activates NF-κB through TLR2, but not TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the survival of the S. pneumoniae ΔpfbA strain as compared to a control peptide treatment, whereas the treatment did not affect survival of a wild-type strain. In a mouse pneumonia model, the host mortality and level of TNF-α in bronchoalveolar lavage fluid were comparable between wild-type and ΔpfbA-infected mice, while deletion of pfbA decreased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis model, the ΔpfbA strain demonstrated significantly increased host mortality and TNF-α levels in plasma, but showed reduced bacterial burden in lung and liver. These results indicate that PfbA may contribute to the success of S. pneumoniae species by inhibiting host cell phagocytosis, excess inflammation, and mortality by interacting with TLR2.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Citofagocitose/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Líquido da Lavagem Broncoalveolar , Proteínas de Transporte/genética , Parede Celular , Modelos Animais de Doenças , Feminino , Células HEK293 , Células HL-60 , Humanos , Evasão da Resposta Imune , Inflamação , Camundongos , NF-kappa B/metabolismo , Neutrófilos , Fagocitose , Filogenia , Pneumonia Pneumocócica/microbiologia , Sepse , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
13.
Microbiol Immunol ; 63(6): 213-222, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31106894

RESUMO

Hinokitiol, a component of the essential oil isolated from Cupressaceae, possesses antibacterial and antifungal activities and has been used in oral care products. In this study, the antibacterial activities of hinokitiol toward various oral, nasal and nasopharyngeal pathogenic bacteria, including Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Fusobacterium nucleatum, methicillin-resistant and -susceptible Staphylococcus aureus, antibiotic-resistant and -susceptible Streptococcus pneumoniae, and Streptococcus pyogenes were examined. Growth of all these bacterial strains was significantly inhibited by hinokitiol, minimal inhibitory concentrations of hinokitiol against S. mutans, S. sobrinus, P. gingivalis, P. intermedia, A. actinomycetemcomitans, F. nucleatum, methicillin-resistant S. aureus, methicillin-susceptible S. aureus, antibiotic-resistant S. pneumoniae isolates, antibiotic-susceptible S. pneumoniae, and S. pyogenes being 0.3, 1.0, 1.0, 30, 0.5, 50, 50, 30, 0.3-1.0, 0.5, and 0.3 µg/mL, respectively. Additionally, with the exception of P. gingivalis, hinokitiol exerted bactericidal effects against all bacterial strains 1 hr after exposure. Hinokitiol did not display any significant cytotoxicity toward the human gingival epithelial cell line Ca9-22, pharyngeal epithelial cell line Detroit 562, human umbilical vein endothelial cells, or human gingival fibroblasts, with the exception of treatment with 500 µg/mL hinokitiol, which decreased numbers of viable Ca9-22 cells and gingival fibroblasts by 13% and 12%, respectively. These results suggest that hinokitiol exhibits antibacterial activity against a broad spectrum of pathogenic bacteria and has low cytotoxicity towards human epithelial cells.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Monoterpenos/farmacologia , Boca/microbiologia , Tropolona/análogos & derivados , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Bactérias/classificação , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Porphyromonas gingivalis/efeitos dos fármacos , Prevotella intermedia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus sobrinus/efeitos dos fármacos , Tropolona/farmacologia
14.
Microbiol Immunol ; 63(3-4): 100-110, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30817027

RESUMO

Aggregatibacter actinomycetemcomitans is considered to be associated with periodontitis. Leukotoxin (LtxA), which destroys leukocytes in humans, is one of this bacterium's major virulence factors. Amounts of neutrophil elastase (NE), which is normally localized in the cytoplasm of neutrophils, are reportedly increased in the saliva of patients with periodontitis. However, the mechanism by which NE is released from human neutrophils and the role of NE in periodontitis is unclear. In the present study, it was hypothesized that LtxA induces NE release from human neutrophils, which subsequently causes the breakdown of periodontal tissues. LtxA-treatment did not induce significant cytotoxicity against human gingival epithelial cells (HGECs) or human gingival fibroblasts (HGFs). However, it did induce significant cytotoxicity against human neutrophils, leading to NE release. Furthermore, NE and the supernatant from LtxA-treated human neutrophils induced detachment and death of HGECs and HGFs, these effects being inhibited by administration of an NE inhibitor, sivelestat. The present results suggest that LtxA mediates human neutrophil lysis and induces the subsequent release of NE, which eventually results in detachment and death of HGECs and HGFs. Thus, LtxA-induced release of NE could cause breakdown of periodontal tissue and thereby exacerbate periodontitis.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Células Epiteliais/patologia , Exotoxinas/metabolismo , Fibroblastos/patologia , Gengiva/microbiologia , Elastase de Leucócito/metabolismo , Neutrófilos/patologia , Periodontite/microbiologia , Aggregatibacter actinomycetemcomitans/patogenicidade , Morte Celular/fisiologia , Linhagem Celular , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Gengiva/citologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Neutrófilos/microbiologia , Sulfonamidas/farmacologia , Fatores de Virulência/metabolismo
15.
Sci Rep ; 9(1): 1490, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728386

RESUMO

Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human deciduous tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka's factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.


Assuntos
Técnicas de Cultura de Células/métodos , Polpa Dentária/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/fisiologia , Fibroblastos/citologia , Humanos , Células-Tronco Multipotentes/citologia , Pele/citologia , Dente Decíduo/citologia
16.
Arch Oral Biol ; 98: 132-139, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30485826

RESUMO

OBJECTIVE: Food-derived peptides have been reported to exhibit antibacterial activity against periodontal pathogenic bacteria. However, no effect has been shown on inflammation and bone resorption in periodontal pathology. The overall objective of the current study was to investigate how rice peptides influence biological defense mechanisms against periodontitis-induced inflammatory bone loss, and identify their novel functions as a potential anti-inflammatory drug. DESIGN: The expression of inflammatory and osteoclast-related molecules was examined in mouse macrophage-derived RAW 264.7 cell cultures using qPCR. Subsequently, the effect of these peptides on inflammatory bone loss in mouse periodontitis was examined using a mouse model of tooth ligation. Briefly, periodontal bone loss was induced for 7 days in mice by ligating the maxillary second molar and leaving the contralateral tooth un-ligated (baseline control). The mice were microinjected daily with the peptide in the gingiva until the day before euthanization. One week after the ligation, TRAP-positive multinucleated cells (MNCs) were enumerated from five random coronal sections of the ligated sites in each mouse. RESULTS: Rice peptides REP9 and REP11 significantly inhibited transcription activity of inflammatory and osteoclast-related molecules. Local treatment with the rice peptides, in mice subjected to ligature-induced periodontitis, inhibited inflammatory bone loss, explaining the decreased numbers of osteoclasts in bone tissue sections. CONCLUSION: Therefore, these data suggested that the rice peptides possess a protective effect against periodontitis.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Antibacterianos/farmacologia , Endosperma/química , Oryza/química , Peptídeos/antagonistas & inibidores , Periodontite/tratamento farmacológico , Extratos Vegetais/farmacologia , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Gengiva/efeitos dos fármacos , Inflamação , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dente Molar , Osteoclastos/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Periodontite/diagnóstico por imagem , Periodontite/patologia , Extratos Vegetais/uso terapêutico , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/uso terapêutico , Células RAW 264.7 , Microtomografia por Raio-X/métodos
17.
Vaccine ; 37(1): 160-168, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442480

RESUMO

Vaccination is an effective strategy to prevent pneumococcal diseases. Currently, licensed vaccines include the pneumococcal polysaccharide vaccine (PPSV) and the pneumococcal conjugate vaccine (PCV), which target some of the most common of the 94 serotypes of S. pneumoniae based on their capsular composition. However, it has been reported that PPSV is not effective in children aged less than 2 years old and PCV induces serotype replacement, which means that the pneumococcal population has changed following widespread introduction of these vaccines, and the non-vaccine serotypes have increased in being the cause of invasive pneumococcal disease. Therefore, it is important that there is development of novel pneumococcal vaccines to either replace or complement current polysaccharide-based vaccines. Our previous study suggested that S. pneumoniae releases elongation factor Tu (EF-Tu) through autolysis followed by the induction of proinflammatory cytokines in macrophages via toll-like receptor 4, that may contribute to the development of pneumococcal diseases. In this study, we investigated the expression of EF-Tu in various S. pneumoniae strains and whether EF-Tu could be an antigen candidate for serotype-independent vaccine against pneumococcal infection. Western blotting and flow cytometry analysis revealed that EF-Tu is a common factor expressed on the surface of all pneumococcal strains tested, as well as intracellularly. In addition, we demonstrate that immunization with recombinant (r) EF-Tu induced the production of inflammatory cytokines and the IgG1 and IgG2a antibodies in mice, and increased the CD4+ T-cells proportion in splenocytes. We also reveal that anti-EF-Tu serum increased the phagocytic activity of mouse peritoneal macrophages against S. pneumoniae infection, independent of their serotypes. Finally, our results indicate that mice immunized with rEF-Tu were significantly and non-specifically protected against lethal challenges with S. pneumoniae serotypes (2 and 15A). Therefore, pneumococcal EF-Tu could be an antigen candidate for the serotype-independent vaccine against pneumococcal infection.


Assuntos
Anticorpos Antibacterianos/sangue , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Citocinas/imunologia , Imunoglobulina G/sangue , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Infecções Pneumocócicas/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Sorogrupo , Streptococcus pneumoniae
18.
Microbiol Immunol ; 62(10): 617-623, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30211957

RESUMO

Streptococcus pyogenes is a bacterium that causes systemic diseases such as pharyngitis and toxic shock syndrome. S. pyogenes produces molecules that inhibit the function of the human immune system, thus allowing growth and spread of the pathogen in tissues. It is known that S. pyogenes CAMP factor induces vacuolation in macrophages; however, the mechanism remains unclear. In the current study, the mechanism by which CAMP factor induces vacuolation in macrophages was investigated. CAMP factor was found to induce calcium ion uptake in murine macrophage RAW264.7 cells. In addition, EDTA inhibited calcium ion uptake and vacuolation in the cells. The L-type voltage-dependent calcium ion channel blockers nifedipine and verapamil reduced vacuolation. Furthermore, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin also inhibited the vacuolation induced by CAMP factor. Fluorescent microscopy revealed that clathrin localized to the vacuoles. These results suggest that the vacuolation is related to calcium ion uptake by RAW264.7 cells via L-type voltage-dependent calcium ion channels. Therefore, it was concluded that the vacuoles induced by S. pyogenes CAMP factor in macrophages are clathrin-dependent endosomes induced by activation of the phosphoinositide 3-kinase signaling pathway through calcium ion uptake.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Cálcio/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Streptococcus pyogenes/metabolismo , Animais , Cromonas/antagonistas & inibidores , Ácido Edético/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Morfolinas/antagonistas & inibidores , Nifedipino/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Células RAW 264.7/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Streptococcus pyogenes/imunologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Verapamil/farmacologia
19.
Microbiol Immunol ; 62(5): 310-316, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29577412

RESUMO

Vizantin is an insoluble adjuvant that activates macrophages and lymphocytes. Recently, 2,2',3,3',4,4'-hexasulfated-vizantin (sulfated vizantin), which enables solubilization of vizantin, was developed by the present team. Sulfated vizantin was found to enhance bactericidal activity against multi-drug resistant Pseudomonas aeruginosa in RAW264.7 cells. In addition, spread of P. aeruginosa was inhibited in RAW264.7 cells treated with sulfated vizantin. When only sulfated vizantin and P. aeruginosa were incubated, sulfated vizantin did not affect growth of P. aeruginosa. Formation of DNA-based extracellular traps (ETs), a novel defense mechanism in several types of innate immune cells, helps to eliminate pathogens. In the present study, ET-forming macrophages constituted the majority of immune cells. Sulfated vizantin induced ET formation in RAW264.7 cells, whereas a Ca-chelating reagent, EDTA, and T-type calcium channel blocker, tetrandrine, inhibited ET formation and attenuated inhibition of spread of P. aeruginosa in sulfated vizantin-treated cells. Thus, sulfated vizantin induces ET formation in phagocytic cells in a Ca-dependent manner, thus preventing spread of P. aeruginosa. Hence, sulfated vizantin may be useful in the management of infectious diseases.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Glicolipídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Trealose/análogos & derivados , Animais , Antibacterianos/farmacologia , Benzilisoquinolinas/farmacologia , Cálcio/metabolismo , Dimetilformamida/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ácido Edético/farmacologia , Macrófagos/fisiologia , Camundongos , Nifedipino/farmacologia , Fagocitose/efeitos dos fármacos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/imunologia , Células RAW 264.7/efeitos dos fármacos , Sulfatos/química , Trealose/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-29416987

RESUMO

Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB) as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.


Assuntos
Cisteína Proteases/metabolismo , Desmogleínas/metabolismo , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/microbiologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Animais , Cisteína Proteases/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mutação , Proteólise , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA