Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(12): 5567-5579, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426897

RESUMO

In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Estrutura Molecular , Modelos Moleculares , Linhagem Celular Tumoral , Antineoplásicos/química , Ciclo Celular , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química
2.
Dalton Trans ; 53(14): 6311-6322, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38487871

RESUMO

While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Complexos de Coordenação/química , Cobalto/farmacologia , Cobalto/química , Fenilenodiaminas/química , DNA/química , Antineoplásicos/química
3.
J Phys Chem B ; 127(28): 6287-6295, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37428676

RESUMO

The Transmembrane Protease Serine 2 (TMPRSS2) is a human enzyme which is involved in the maturation and post-translation of different proteins. In addition to being overexpressed in cancer cells, TMPRSS2 plays a further fundamental role in favoring viral infections by allowing the fusion of the virus envelope with the cellular membrane, notably in SARS-CoV-2. In this contribution, we resort to multiscale molecular modeling to unravel the structural and dynamical features of TMPRSS2 and its interaction with a model lipid bilayer. Furthermore, we shed light on the mechanism of action of a potential inhibitor (nafamostat), determining the free-energy profile associated with the inhibition reaction and showing the facile poisoning of the enzyme. Our study, while providing the first atomistically resolved mechanism of TMPRSS2 inhibition, is also fundamental in furnishing a solid framework for further rational design targeting transmembrane proteases in a host-directed antiviral strategy.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Membrana Celular , Serina
4.
ACS Macro Lett ; 12(7): 999-1004, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37406348

RESUMO

We report the synthesis of a macrocyclic poly(ethylene oxide) (PEO) connected by one [Ru(bpy)3]2+ unit (where bpy = 2,2'-bipyridine), a photoactive metal complex that provides photosensitivity and potential biomedical applications to this polymer structure. The PEO chain provides biocompatibility, water solubility, and topological play. The macrocycles were successfully synthesized by copper-free click cycloaddition between a bifunctional dibenzocyclooctyne (DBCO)-PEO precursor and 4,4'-diazido-2,2'-bipyridine, followed by complexation with [Ru(bpy)2Cl2]. The cyclic product accumulated efficiently in MCF7 cancer cells and exhibited a longer fluorescence lifetime than its linear analogue, likely due to differences in the accessibility of the ligand-centered/intraligand states of Ru polypyridyls in both topologies.

5.
Cancer Lett ; 565: 216237, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211067

RESUMO

Small-molecule EGFR inhibitors have distinctly improved the overall survival especially in EGFR-mutated lung cancer. However, their use is often limited by severe adverse effects and rapid resistance development. To overcome these limitations, a hypoxia-activatable Co(III)-based prodrug (KP2334) was recently synthesized releasing the new EGFR inhibitor KP2187 in a highly tumor-specific manner only in hypoxic areas of the tumor. However, the chemical modifications in KP2187 necessary for cobalt chelation could potentially interfere with its EGFR-binding ability. Consequently, in this study, the biological activity and EGFR inhibition potential of KP2187 was compared to clinically approved EGFR inhibitors. In general, the activity as well as EGFR binding (shown in docking studies) was very similar to erlotinib and gefitinib (while other EGFR-inhibitory drugs behaved different) indicating no interference of the chelating moiety with the EGFR binding. Moreover, KP2187 significantly inhibited cancer cell proliferation as well as EGFR pathway activation in vitro and in vivo. Finally, KP2187 proved to be highly synergistic with VEGFR inhibitors such as sunitinib. This indicates that KP2187-releasing hypoxia-activated prodrug systems are promising candidates to overcome the clinically observed enhanced toxicity of EGFR-VEGFR inhibitor combination therapies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Hipóxia/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
6.
J Phys Chem Lett ; 14(20): 4704-4710, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37171167

RESUMO

Guanine quadruplexes (G4s) play essential protective and regulatory roles within cells, influencing gene expression. In several gene-promoter regions, multiple G4-forming sequences are in close proximity and may form three-dimensional arrangements. We analyze the interplay among the three neighboring G4s in the c-KIT proto-oncogene promoter (WK1, WSP, and WK2). We highlight that the three G4s are structurally linked and their cross-talk favors the formation of a parallel structure for WSP. Relying on all-atom molecular dynamic simulations exceeding the µs time scale and using enhanced sampling methods, we provide the first computationally resolved structure of a well-organized G4 cluster in the promoter of a crucial gene involved in cancer development. Our results indicate that neighboring G4s influence their mutual three-dimensional arrangement and provide a powerful tool to predict and interpret complex DNA structures that can ultimately be used as a starting point for drug discovery.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas/genética , DNA/química , Proto-Oncogenes
7.
Chembiochem ; 24(6): e202200624, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36598366

RESUMO

Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy is the best avenue to design specifically tuned and selective peptides, thus leading to the control of important biological functions.


Assuntos
Quadruplex G , Peptídeos
8.
Dalton Trans ; 52(10): 2966-2975, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444991

RESUMO

DNA G-rich sequences can organize in four-stranded structures called G-quadruplexes (G4s). These motifs are enriched in significant sites within the human genomes, including telomeres and promoters of cancer related genes. For instance, KIT proto-oncogene promoter, associated with diverse cancers, contains three adjacent G4 units, namely Kit2, SP, and Kit1. Aiming at finding new and selective G-quadruplex binders, we have synthesized and characterized five non-charged metal complexes of Pt(II), Pd(II), Ni(II), Cu(II) and Zn(II) of a chlorine substituted Salphen ligand. The crystal structure of the Pt(II) and Pd(II) complexes was determined by XRPD. FRET measurements indicated that Pt(II) and Pd(II) compounds stabilize Kit1 and Kit2 G4s but not SP, telomeric and double stranded DNA. Spectroscopic investigations (UV-Vis, circular dichroism and fluorescence) suggested the Cu(II) complex as the most G4-selective compound. Interestingly, docking simulations indicate that the synthesized compounds fit groove binding pockets of both Kit1 and Kit2 G4s. Moreover, they exhibited dose-dependent cytotoxic activity in MCF-7, HepG2 and HeLa cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quadruplex G , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Fenilenodiaminas/química , Dicroísmo Circular , Telômero
9.
Chemistry ; 28(57): e202201824, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35791808

RESUMO

We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.


Assuntos
Quadruplex G , Ácidos Nucleicos , Sítios de Ligação de Anticorpos , Proteínas de Repetição de Anquirina Projetadas , Epitopos , Guanina/química , Humanos , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2
10.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630732

RESUMO

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.


Assuntos
Reparo do DNA , Quadruplex G , DNA/efeitos da radiação , Dano ao DNA , Instabilidade Genômica , Humanos
11.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299583

RESUMO

Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b']dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI50 in the low µM range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b']dithiophene derivatives, bearing the pharmacophoric assumptions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Citotoxinas , Quadruplex G/efeitos dos fármacos , Naftóis , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Células HeLa , Humanos , Naftóis/síntese química , Naftóis/química , Naftóis/farmacologia , Proteínas Proto-Oncogênicas c-myc/biossíntese
12.
Chemistry ; 27(34): 8865-8874, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33871121

RESUMO

Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.


Assuntos
Quadruplex G , Telomerase , Dicroísmo Circular , DNA/metabolismo , Humanos , Conformação de Ácido Nucleico , Estresse Oxidativo , Telomerase/metabolismo , Telômero/metabolismo
13.
Commun Chem ; 4(1): 162, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697631

RESUMO

Landomycins are angucyclines with promising antineoplastic activity produced by Streptomyces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide chain differs within derivatives. Herein, we report that landomycins spontaneously form Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While landomycins generally do not display emissive properties, the respective Michael adducts exerted intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the fluorescent mono-adduct. While extracellular adduct formation completely blocked the cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glutathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting agents like menadione but exerted reduced activity under hypoxia. Summarizing, landomycins represent natural glutathione-depleting agents and fluorescence probes for intracellular anthraquinone-based angucycline metabolism.

14.
Angew Chem Int Ed Engl ; 59(39): 17130-17136, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32633820

RESUMO

AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.


Assuntos
Antineoplásicos/farmacologia , Ouro/farmacologia , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Compostos Heterocíclicos/química , Humanos , Radioisótopos do Iodo , Ligantes , Metano/química , Metano/farmacologia , Camundongos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Células Tumorais Cultivadas
15.
Bioorg Chem ; 99: 103778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229347

RESUMO

Despite the huge success of tyrosine kinase inhibitors as anticancer agents, severe side effects are a major problem. In order to overcome this drawback, the first hypoxia-activatable 2-nitroimidazole-based prodrugs of the clinically approved ALK and c-MET inhibitor crizotinib were developed. The 2-aminopyridine functionality of crizotinib (essential for target kinase binding) was considered as ideal position for prodrug derivatization. Consequently, two different prodrugs were synthesized with the nitroimidazole unit attached to crizotinib either via carbamoylation (A) or alkylation (B) of the 2-aminopyridine moiety. The successful prodrug design could be proven by docking studies and a dramatically reduced ALK and c-MET kinase-inhibitory potential. Furthermore, the prodrugs showed high stability in serum and release of crizotinib in an enzymatic nitroreductase-based cleavage assay was observed for prodrug A. The in vitro activity of both prodrugs was investigated against ALK- and c-MET-dependent or -overexpressing cells, revealing a distinct hypoxia-dependent activation for prodrug A. Finally, inhibition of c-MET phosphorylation and cell proliferation could also be proven in vivo. In summary of the theoretical, chemical and biological studies, prodrug derivatization of the 2-aminopyridine position can be considered as a promising strategy to reduce the side effects and improve the anticancer activity of crizotinib.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Crizotinibe/farmacologia , Desenvolvimento de Medicamentos , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Crizotinibe/síntese química , Crizotinibe/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Relação Estrutura-Atividade
16.
Antioxidants (Basel) ; 8(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658666

RESUMO

The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences-representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences-have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE-DNA binding modes. The binding selectivity towards G-quadruplexes is confirmed by both experimental and theoretical determination of the binding free energies. Overall, our mixed computational and experimental approach is able to shed light on the interaction of small molecules with different DNA conformations. In particular, CHE may be seen as the building block of promising drug candidates specifically targeting G-quadruplexes for both antitumoral and antiviral purposes.

17.
Dalton Trans ; 48(32): 12040-12049, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31292575

RESUMO

Quadruplex nucleic acids - DNA/RNA secondary structures formed in guanine rich sequences - proved to have key roles in the biology of cancers and, as such, in recent years they emerged as promising targets for small molecules. Many reports demonstrated that metal complexes can effectively stabilize quadruplex structures, promoting telomerase inhibition, downregulation of the expression of cancer-related genes and ultimately cancer cell death. Although extensively explored as anticancer agents, studies on the ability of ruthenium arene complexes to interact with quadruplex nucleic acids are surprisingly almost unknown. Herein, we report on the synthesis and characterization of four novel Ru(ii) arene complexes with 1,3-dioxoindan-2-carboxamides ligands bearing pendant naphthyl-groups designed to bind quadruplexes by both stacking and coordinating interactions. We show how improvements on the hydrolytic stability of such complexes, by substituting the chlorido leaving ligand with pyridine, have a dramatic impact on their interaction with quadruplexes and on their cytotoxicity against ovarian cancer cells.


Assuntos
Antineoplásicos/farmacologia , Calixarenos/farmacologia , Complexos de Coordenação/farmacologia , Quadruplex G , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315181

RESUMO

Oxadizoles are heterocyclic ring systems that find application in different scientific disciplines, from medicinal chemistry to optoelectronics. Coordination with metals (especially the transition ones) proved to enhance the intrinsic characteristics of these organic ligands and many metal complexes of oxadiazoles showed attractive characteristics for different research fields. In this review, we provide a general overview on different metal complexes and polymers containing oxadiazole moieties, reporting the principal synthetic approaches adopted for their preparation and showing the variety of applications they found in the last 40 years.


Assuntos
Metais/química , Compostos Organometálicos/química , Oxidiazóis/química , Anti-Inflamatórios/química , Antineoplásicos/química
19.
J Am Chem Soc ; 141(26): 10205-10213, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244182

RESUMO

The proto-oncogene KIT encodes for a tyrosine kinase receptor, which is a clinically validated target for treating gastrointestinal stromal tumors. The KIT promoter contains a G-rich domain within a relatively long sequence potentially able to form three adjacent G-quadruplex (G4) units, namely, K2, SP, and K1. These G4 domains have been studied mainly as single quadruplex units derived from short truncated sequences and are currently considered promising targets for anticancer drugs, alternatively to the encoded protein. Nevertheless, the information reported so far does not contemplate the interplay between those neighboring G4s in the context of the whole promoter, possibly thwarting drug-discovery efforts. Here we report the structural and functional study of the KIT promoter core sequence, in both single- and double-stranded forms, which includes all three predicted G4 units. By preventing the formation of alternatively one or two G4 units and by combining biophysical techniques and biological assays, we show for the first time that these quadruplexes cannot be analyzed independently, but they are correlated to each other. Our data suggest that, while K2 and K1 G-rich sequences retain the ability to fold into parallel G4 motifs within a long sequence, the SP G-rich domain contributes to G4 structure only together with K2. Remarkably, we have found that, in the context of a dynamic equilibrium between the three G4 units, the G4 formed by K1 has the most significant influence on the structure stability and on the biological role of the whole promoter.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-kit/genética , Humanos , Proto-Oncogene Mas
20.
Angew Chem Int Ed Engl ; 58(24): 8007-8012, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31002438

RESUMO

Metal-driven self-assembly afforded a multitude of fascinating supramolecular coordination complexes (SCCs) with applications as catalysts, host-guest, and stimuli-responsive systems. However, the interest in the biological applications of SCCs is only starting to emerge and thorough characterization of their behavior in biological milieus is still lacking. Herein, we report on the synthesis and detailed in-cell tracking of a Pt2 L2 metallacycle. We show that our hexagonal supramolecule accumulates in cancer cell nuclei, exerting a distinctive blue fluorescence staining of chromatin resistant to UV photobleaching selectively in nucleolar G4-rich regions. SCC co-localizes with epitopes of the quadruplex-specific antibody BG4 and replaces other well-known G4 stabilizers. Moreover, the photophysical changes accompanying the metallacycle binding to G4s in solution (fluorescence quenching, absorption enhancement) also take place intracellularly, allowing its subcellular interaction tracking.


Assuntos
DNA/química , Quadruplex G , Compostos Organoplatínicos/química , Linhagem Celular Tumoral , DNA/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Células MCF-7 , Modelos Moleculares , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacocinética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA