Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Virchows Arch ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879691

RESUMO

Histological assessment of autoimmune hepatitis (AIH) is challenging. As one of the possible results of these challenges, nonclassical features such as bile-duct injury stays understudied in AIH. We aim to develop a deep learning tool (artificial intelligence for autoimmune hepatitis [AI(H)]) that analyzes the liver biopsies and provides reproducible, quantifiable, and interpretable results directly from routine pathology slides. A total of 123 pre-treatment liver biopsies, whole-slide images with confirmed AIH diagnosis from the archives of the Institute of Pathology at University Hospital Basel, were used to train several convolutional neural network models in the Aiforia artificial intelligence (AI) platform. The performance of AI models was evaluated on independent test set slides against pathologist's manual annotations. The AI models were 99.4%, 88.0%, 83.9%, 81.7%, and 79.2% accurate (ratios of correct predictions) for tissue detection, liver microanatomy, necroinflammation features, bile duct damage detection, and portal inflammation detection, respectively, on hematoxylin and eosin-stained slides. Additionally, the immune cells model could detect and classify different immune cells (lymphocyte, plasma cell, macrophage, eosinophil, and neutrophil) with 72.4% accuracy. On Sirius red-stained slides, the test accuracies were 99.4%, 94.0%, and 87.6% for tissue detection, liver microanatomy, and fibrosis detection, respectively. Additionally, AI(H) showed bile duct injury in 81 AIH cases (68.6%). The AI models were found to be accurate and efficient in predicting various morphological components of AIH biopsies. The computational analysis of biopsy slides provides detailed spatial and density data of immune cells in AIH landscape, which is difficult by manual counting. AI(H) can aid in improving the reproducibility of AIH biopsy assessment and bring new descriptive and quantitative aspects to AIH histology.

2.
Front Oncol ; 13: 1256783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107071

RESUMO

Background: Idiosyncratic drug-induced liver injury (DILI) is a rare, unpredictable hepatic adverse event and the most common cause of acute liver failure in Europe and the US. Ribociclib is a potent Cyclin-dependent kinase 4 and 6 (CDK4/6)-inhibitor administered for advanced hormone-receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Previous reports have shown hepatotoxicity without liver necrosis related to ribociclib. Case presentation: A 41-year-old female patient with primary metastatic HR-positive, HER2-negative breast cancer developed liver enzyme elevation under treatment with ribociclib. Ribociclib was withdrawn 8 weeks after initiation due to liver enzyme elevation. A liver biopsy, performed due to further enzyme increase (peak ALT 2836 U/l), onset of jaundice (peak bilirubin 353 µmol/l) and coagulopathy (INR 1.8) two weeks later, revealed acute hepatitis with 30% parenchymal necrosis. Roussel Uclaf Causality Assessment Method (RUCAM) score was 7 points (probable). Under treatment with prednisone (60mg), initiated 2 weeks after drug withdrawal, and subsequently N-acetylcysteine (Prescott regimen) liver enzymes normalized within 8 weeks along with prednisone tapering. Conclusion: This case illustrates the development of a severe idiosyncratic hepatocellular pattern DILI grade 3 (International DILI Expert Working Group) induced by ribociclib. Routine liver enzyme testing during therapy, immediate hepatologic work-up and treatment interruption in case of liver enzyme elevation are highly recommended. Corticosteroid treatment should be considered in cases of severe necroinflammation.

3.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37804830

RESUMO

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Assuntos
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo
5.
Front Immunol ; 14: 1194087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426665

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-associated death. In the tumor site, the interplay between effector immune cells and cancer cells determines the balance between tumor elimination or outgrowth. We discovered that the protein TMEM123 is over-expressed in tumour-infiltrating CD4 and CD8 T lymphocytes and it contributes to their effector phenotype. The presence of infiltrating TMEM123+ CD8+ T cells is associated with better overall and metastasis-free survival. TMEM123 localizes in the protrusions of infiltrating T cells, it contributes to lymphocyte migration and cytoskeleton organization. TMEM123 silencing modulates the underlying signaling pathways dependent on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, which are required for synaptic force exertion. Using tumoroid-lymphocyte co-culture assays, we found that lymphocytes form clusters through TMEM123, anchoring to cancer cells and contributing to their killing. We propose an active role for TMEM123 in the anti-cancer activity of T cells within tumour microenvironment.


Assuntos
Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Humanos , Linfócitos T CD8-Positivos , Técnicas de Cocultura , Transdução de Sinais , Microambiente Tumoral
6.
J Hepatol ; 79(3): 666-676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290592

RESUMO

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Assuntos
COVID-19 , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite Autoimune , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Fígado/patologia , Receptores de Antígenos de Linfócitos T , Vacinação
7.
Nat Genet ; 55(4): 651-664, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914834

RESUMO

Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/ß-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.


Assuntos
Regeneração Hepática , Fígado , Proliferação de Células/genética , Hepatócitos , Células Epiteliais , Células-Tronco , Diferenciação Celular/genética
8.
Cancers (Basel) ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36765894

RESUMO

Patients with pT1 high-grade (HG) urothelial carcinoma (UC) and a very high risk of progression might benefit from immediate radical cystectomy (RC), but this option remains controversial. Validation of a standardized method to evaluate the extent of lamina propria (LP) invasion (with recognized prognostic value) in transurethral resection (TURBT) specimens is still needed. The Rete Oncologica Lombarda (ROL) system showed a high predictive value for progression after TURBT in recent retrospective studies. The ROL system was supposed to be validated on a large prospective series of primary urothelial carcinomas from a single institution. From 2016 to 2020, we adopted ROL for all patients with pT1 HG UC on TURBT. We employed a 1.0-mm threshold to stratify tumors in ROL1 and ROL2. A total of 222 pT1 HG UC were analyzed. The median age was 74 years, with a predominance of men (73.8%). ROL was feasible in all cases: 91 cases were ROL1 (41%), and 131 were ROL2 (59%). At a median follow-up of 26.9 months (IQR 13.8-40.6), we registered 81 recurrences and 40 progressions. ROL was a significant predictor of tumor progression in both univariable (HR 3.53; CI 95% 1.56-7.99; p < 0.01) and multivariable (HR 2.88; CI 95% 1.24-6.66; p = 0.01) Cox regression analyses. At Kaplan-Meier estimates, ROL showed a correlation with both PFS (p = 0.0012) and RFS (p = 0.0167). Our results confirmed the strong predictive value of ROL for progression in a large prospective series. We encourage the application of ROL for reporting the extent of LP invasion, substaging T1 HG UC, and improving risk tables for urological decision-making.

9.
Pathobiology ; 90(3): 166-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36202073

RESUMO

INTRODUCTION: Colorectal carcinoma (CRC) is among the most common carcinomas in women and men. In the advanced stage, patients are treated based on the RAS status. Recent studies indicate that in the future, in addition to KRAS and NRAS, alterations in other genes, such as PIK3CA or TP53, will be considered for therapy. Therefore, it is important to know the mutational landscape of routinely diagnosed CRC. METHOD: We report the molecular profile of 512 Swiss CRC patients analyzed by targeted next-generation sequencing as part of routine diagnostics at our institute. RESULTS: Pathogenic and likely pathogenic variants were found in 462 (90%) CRC patients. Variants were detected in TP53 (54.3%), KRAS (48.2%), PIK3CA (15.6%), BRAF (13.5%), SMAD4 (10.5%), FBXW7 (7.8%), NRAS (3.5%), PTEN (2.7%), ERBB2 (1.6%), AKT1 (1.5%), and CTNNB1 (0.9%). The remaining pathogenic alterations were found in the genes ATM(n= 1), MAP2K1(n= 1), and IDH2(n= 1). DISCUSSION/CONCLUSIONS: Our analysis revealed the prevalence of potential predictive markers in a large cohort of CRC patients obtained during routine diagnostic analysis. Furthermore, our study is the first of this size to uncover the molecular landscape of CRC in Switzerland.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Masculino , Humanos , Feminino , Prevalência , Proteínas Proto-Oncogênicas p21(ras)/genética , Suíça/epidemiologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Sequenciamento de Nucleotídeos em Larga Escala
10.
Mol Cell ; 82(22): 4246-4261.e11, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36400009

RESUMO

Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Acetilcoenzima A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
11.
Commun Med (Lond) ; 2: 80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789568

RESUMO

Background: Hepatocellular carcinoma with neuroendocrine differentiation (HCC-NED) is a very rare subtype of primary liver cancer. Treatment allocation in these patients therefore remains a challenge. Methods: We report the case of a 74-year-old man with a HCC-NED. The tumor was surgically removed in curative intent. Histopathological work-up revealed poorly differentiated hepatocellular carcinoma (Edmondson-Steiner grade IV) with diffuse expression of neuroendocrine markers synaptophysin and chromogranin. Three months after resection, multifocal recurrence of the HCC-NED was observed. In the meantime, tumor organoids have been generated from the resected HCC-NED and extensively characterized. Sensitivity to a number of drugs approved for the treatment of HCC or neuroendocrine carcinomas was tested in vitro. Results: Based on the results of the in vitro drug screening, etoposide and carboplatin are used as first line palliative combination treatment. With genomic analysis revealing a NTRK1-mutation of unknown significance (kinase domain) and tumor organoids found to be sensitive to entrectinib, a pan-TRK inhibitor, the patient was treated with entrectinib as second line therapy. After only two weeks, treatment is discontinued due to deterioration of the patient's general condition. Conclusion: The rapid establishment of patient-derived tumor organoids allows in vitro drug testing and thereby personalized treatment choices, however clinical translation remains a challenge. To the best of our knowledge, this report provides a first proof-of-principle for using organoids for personalized medicine in this rare subtype of primary liver cancer.

13.
Commun Med (Lond) ; 2: 11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603298

RESUMO

Background: Focal nodular hyperplasia (FNH) is typically considered a benign tumor of the liver without malignant potential. The co-occurrence of FNH and hepatocellular carcinoma (HCC) has been reported in rare cases. In this study we sought to investigate the clonal relationship between these lesions in a patient with FNH-HCC co-occurrence. Methods: A 74-year-old female patient underwent liver tumor resection. The resected nodule was subjected to histologic analyses using hematoxylin and eosin stain and immunohistochemistry. DNA extracted from microdissected FNH and HCC regions was subjected to whole exome sequencing. Clonality analysis were performed using PyClone. Results: Histologic analysis reveals that the nodule consists of an FNH and two adjoining HCC components with distinct histopathological features. Immunophenotypic characterization and genomic analyses suggest that the FNH is clonally related to the HCC components, and is composed of multiple clones at diagnosis, that are likely to have progressed to HCC through clonal selection and/or the acquisition of additional genetic events. Conclusion: To the best of our knowledge, our work is the first study showing a clonal relationship between FNH and HCC. We show that FNH may possess the capability to undergo malignant transformation and to progress to HCC in very rare cases.

14.
Nat Commun ; 13(1): 2436, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508466

RESUMO

Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and translational control, signaling transduction, and metabolism are dysregulated and differentially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal transition, the Wnt-ß-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53 mutations are associated with altered protein phosphorylation related to actin filament organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that HCC constitutes heterogeneous subgroups with distinct regulation of biological processes, metabolic reprogramming and kinase activation. Our study provides a comprehensive overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major pathways altered in the (phospho)proteome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteogenômica , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Mutação , Proteômica , beta Catenina/metabolismo
15.
Commun Biol ; 5(1): 373, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440675

RESUMO

Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fator de Transcrição GATA3/genética , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-mdm2/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
16.
JCO Precis Oncol ; 6: e2100335, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263170

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, with more than 40% of patients initially diagnosed with multinodular HCCs. Although circulating cell-free DNA (cfDNA) has been shown to effectively detect somatic mutations, little is known about its utility to capture intratumor heterogeneity in patients with multinodular HCC undergoing systemic treatment. MATERIALS AND METHODS: Tumor biopsies and plasma were synchronously collected from seven prospectively recruited patients with HCC before and during systemic therapy. Plasma-derived cfDNA and matched germline were subjected to high-depth targeted sequencing with molecular barcoding. The mutational profile of the cfDNA was compared with whole-exome sequencing from matched tumor biopsies. RESULTS: Genomic data revealed that out of the seven patients, five were considered intrahepatic metastasis and two multicentric HCCs. cfDNA captured the majority of mutations in the tumors and detected significantly more mutations than tumor biopsies. Driver mutations such as CTNNB1 S33C, NRAS Q61R, ARID1A R727fs, and NF1 E2368fs as well as standard-of-care biomarkers of response to targeted therapy were detected only in cfDNA. In the two patients with multicentric HCC, cfDNA detected mutations derived from the genetically independent and spatially distinct nodules. Moreover, cfDNA was not only able to capture clonal mutations but also the subclonal mutations detected in only one of the multiple biopsied nodules. Furthermore, serial cfDNA detected variants of tumor origin emerging during treatment. CONCLUSION: This study revealed that the genetic analysis of cfDNA captures the intratumor heterogeneity in multinodular HCC highlighting the potential for cfDNA as a sensitive and noninvasive tool for precision medicine.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Livres/genética , Humanos , Neoplasias Hepáticas/genética , Sequenciamento do Exoma
17.
Nat Commun ; 13(1): 930, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177623

RESUMO

The Hippo/YAP pathway controls cell proliferation through sensing physical and spatial organization of cells. How cell-cell contact is sensed by Hippo signaling is poorly understood. Here, we identified the cell adhesion molecule KIRREL1 as an upstream positive regulator of the mammalian Hippo pathway. KIRREL1 physically interacts with SAV1 and recruits SAV1 to cell-cell contact sites. Consistent with the hypothesis that KIRREL1-mediated cell adhesion suppresses YAP activity, knockout of KIRREL1 increases YAP activity in neighboring cells. Analyzing pan-cancer CRISPR proliferation screen data reveals KIRREL1 as the top plasma membrane protein showing strong correlation with known Hippo regulators, highlighting a critical role of KIRREL1 in regulating Hippo signaling and cell proliferation. During liver regeneration in mice, KIRREL1 is upregulated, and its genetic ablation enhances hepatic YAP activity, hepatocyte reprogramming and biliary epithelial cell proliferation. Our data suggest that KIRREL1 functions as a feedback regulator of the mammalian Hippo pathway through sensing cell-cell interaction and recruiting SAV1 to cell-cell contact sites.


Assuntos
Comunicação Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação Fisiológica , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Hepatócitos , Via de Sinalização Hippo , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas de Sinalização YAP/metabolismo
18.
Hepatol Commun ; 6(6): 1467-1481, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132819

RESUMO

Chronic liver inflammation causes continuous liver damage with progressive liver fibrosis and cirrhosis, which may eventually lead to hepatocellular carcinoma (HCC). Whereas the 10-year incidence for HCC in patients with cirrhosis is approximately 20%, many of these patients remain tumor free for their entire lives. Clarifying the mechanisms that define the various outcomes of chronic liver inflammation is a key aspect in HCC research. In addition to a wide variety of contributing factors, microRNAs (miRNAs) have also been shown to be engaged in promoting liver cancer. Therefore, we wanted to characterize miRNAs that are involved in the development of HCC, and we designed a longitudinal study with formalin-fixed and paraffin-embedded liver biopsy samples from several pathology institutes from Switzerland. We examined the miRNA expression by nCounterNanostring technology in matched nontumoral liver tissue from patients developing HCC (n = 23) before and after HCC formation in the same patient. Patients with cirrhosis (n = 26) remaining tumor free within a similar time frame served as a control cohort. Comparison of the two cohorts revealed that liver tissue from patients developing HCC displayed a down-regulation of miR-579-3p as an early step in HCC development, which was further confirmed in a validation cohort. Correlation with messenger RNA expression profiles further revealed that miR-579-3p directly attenuated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) expression and consequently protein kinase B (AKT) and phosphorylated AKT. In vitro experiments and the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology confirmed that miR-579-3p controlled cell proliferation and cell migration of liver cancer cell lines. Conclusion: Liver tissues from patients developing HCC revealed changes in miRNA expression. miR-579-3p was identified as a novel tumor suppressor regulating phosphoinositide 3-kinase-AKT signaling at the early stages of HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Estudos Longitudinais , MicroRNAs/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
19.
Quant Imaging Med Surg ; 12(2): 1186-1197, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111615

RESUMO

BACKGROUND: Liver steatosis is common and tracking disease evolution to steatohepatitis and cirrhosis is essential for risk stratification and resultant patient management. Consequently, diagnostic tools allowing categorization of liver parenchyma based on routine imaging are desirable. The study objective was to compare established mono-factorial, dynamic single parameter and iterative multiparametric routine computed tomography (CT) and magnetic resonance imaging (MRI) analyses to distinguish between liver steatosis, steatohepatitis, cirrhosis and normal liver parenchyma. METHODS: A total of 285 multi-phase contrast enhanced CT and 122 MRI studies with histopathological correlation of underlying parenchymal condition were retrospectively included. Parenchymal conditions were characterized based on CT Hounsfield units (HU) or MRI signal intensity (SI) measurements and calculated HU or SI ratios between non-contrast and contrast enhanced imaging time points. First, the diagnostic accuracy of mono-factorial analyses using established, static non-contrast HU and in- to opposed phase SI change cut-offs to distinguish between parenchymal conditions was established. Second, single dynamic discriminator analyses, with optimized non-contrast and enhancement HU and SI ratio cut-off values derived from the data, employing receiver operating characteristic (ROC) curve areas under the curve (AUCs) and the Youden index for maximum accuracy, were used for disease diagnosis. Third, multifactorial analyses, employing multiple non-contrast and contrast enhanced HU and SI ratio cut-offs in a nested, predictive-modelling algorithm were performed to distinguish between normal parenchyma, liver steatosis, steatohepatitis and cirrhosis. CT and MRI analyses were performed separately. RESULTS: No single CT or MRI parameter showed significant difference between all four parenchymal conditions (each P>0.05). Mono-factorial static-CT-discriminator analyses identified liver steatosis with 75% accuracy. Mono-factorial MRI analyses identified steatosis with 89% accuracy. Single-dynamic CT parameter analyses identified normal parenchyma with 72% accuracy and cirrhosis with 75% accuracy. Single-dynamic MRI parameter analyses identified fatty parenchyma with 90% accuracy. Multifactorial CT analyzes identified normal parenchyma with 84%, liver steatosis with 95%, steatohepatitis with 95% and cirrhosis with 80% accuracy. Multifactorial predictive modelling of MRI parameters identified normal parenchyma with 79%, liver steatosis with 89%, steatohepatitis with 92% and cirrhosis with 89% accuracy. CONCLUSIONS: Multiparametric analyses of quantitative measurements derived from routine CT and MRI, utilizing a predictive modelling algorithm, can help to distinguish between normal liver parenchyma, liver steatosis, steatohepatitis and cirrhosis.

20.
Mol Oncol ; 16(3): 665-682, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34863035

RESUMO

Hepatocellular carcinomas (HCCs) usually arise from chronic liver disease (CLD). Precancerous cells in chronically inflamed environments may be 'epigenetically primed', sensitising them to oncogenic transformation. We investigated whether epigenetic priming in CLD may affect HCC outcomes by influencing the genomic and transcriptomic landscapes of HCC. Analysis of DNA methylation arrays from 10 paired CLD-HCC identified 339 shared dysregulated CpG sites and 18 shared differentially methylated regions compared with healthy livers. These regions were associated with dysregulated expression of genes with relevance in HCC, including ubiquitin D (UBD), cytochrome P450 family 2 subfamily C member 19 (CYP2C19) and O-6-methylguanine-DNA methyltransferase (MGMT). Methylation changes were recapitulated in an independent cohort of nine paired CLD-HCC. High CLD methylation score, defined using the 124 dysregulated CpGs in CLD and HCC in both cohorts, was associated with poor survival, increased somatic genetic alterations and TP53 mutations in two independent HCC cohorts. Oncogenic transcriptional and methylation dysregulation is evident in CLD and compounded in HCC. Epigenetic priming in CLD sculpts the transcriptional landscape of HCC and creates an environment favouring the acquisition of genetic alterations, suggesting that the extent of epigenetic priming in CLD could influence disease outcome.


Assuntos
Carcinoma Hepatocelular , Epigênese Genética , Hepatopatias , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Doença Crônica , Metilação de DNA/genética , Redes Reguladoras de Genes , Humanos , Hepatopatias/complicações , Hepatopatias/metabolismo , Neoplasias Hepáticas/patologia , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA