Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancers (Basel) ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291870

RESUMO

In the context of improving radiation therapy, high-atomic number (Z) metallic nanoparticles and, more importantly, gold-based nanostructures are developed as radiation enhancers/radiosensitizers. Due to the diversity of cell lines, nanoparticles, as well as radiation types or doses, the resulting biological effects may differ and remain obscure. In this multiparameter study, we aim to shed light on these effects and investigate them further by employing X-irradiation and three human cancer cell lines (PC3, A549, and U2OS cells) treated by multiple techniques. TEM experiments on PC3 cells showed that citrate-capped AuNPs were found to be located mostly in membranous structures/vesicles or autophagosomes, but also, in the case of PEG-capped AuNPs, inside the nucleus as well. The colony-forming capability of cancer cells radiosensitized by AuNPs decreased significantly and the DNA damage detected by cytogenetics, γH2AX immunostaining, and by single (γH2AX) or double (γH2AX and OGG1) immunolocalization via transmission electron microscopy (TEM) was in many cases higher and/or persistent after combination with AuNPs than upon individual exposure to ionizing radiation (IR). Moreover, different cell cycle distribution was evident in PC3 but not A549 cells after treatment with AuNPs and/or irradiation. Finally, cellular senescence was investigated by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13) which showed that based on the AuNPs' concentration, an increased number of senescent cells might be observed after exposure to IR. Even though different cell lines or different types and concentrations of AuNPs may alter the levels of radiosensitization, our results imply that the complexity of damage might also be an important factor of AuNP-induced radiosensitization.

2.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563721

RESUMO

The new and increasingly studied concept of immunogenic cell death (ICD) revealed a previously unknown perspective of the various regulated cell death (RCD) modalities, elucidating their immunogenic properties and rendering obsolete the notion that immune stimulation is solely the outcome of necrosis. A distinct characteristic of ICD is the release of danger-associated molecular patterns (DAMPs) by dying and/or dead cells. Thus, several members of the DAMP family, such as the well-characterized heat shock proteins (HSPs) HSP70 and HSP90, the high-mobility group box 1 protein and calreticulin, and the thymic polypeptide prothymosin α (proTα) and its immunoreactive fragment proTα(100-109), are being studied as potential diagnostic tools and/or possible therapeutic agents. Here, we present the basic aspects and mechanisms of both ICD and other immunogenic RCD forms; denote the role of DAMPs in ICD; and further exploit the relevance of human proTα and proTα(100-109) in ICD, highlighting their possible clinical applications. Furthermore, we present the preliminary results of our in vitro studies, which show a direct correlation between the concentration of proTα/proTα(100-109) and the levels of cancer cell apoptosis, induced by anticancer agents and γ-radiation.


Assuntos
Morte Celular Imunogênica , Timosina , Alarminas/metabolismo , Biomarcadores , Humanos , Imunidade , Peptídeos , Precursores de Proteínas , Timosina/análogos & derivados , Timosina/farmacologia
3.
Front Public Health ; 9: 701878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368064

RESUMO

The effect of the reportedly low ionizing radiation doses, such as those very often delivered to patients in interventional cardiology, remains ambiguous. As interventional cardiac procedures may have a significant impact on total collective effective dose, there are radiation protection concerns for patients and physicians regarding potential late health effects. Given that very low doses (<100 mSv) are expected to be delivered during these procedures, the purpose of this study was to assess the potency and suitability of current genotoxicity biomarkers to detect and quantitate biological effects essential for risk estimation in interventional cardiology. Specifically, the biomarkers γ-H2AX foci, dicentric chromosomes, and micronuclei, which underpin radiation-induced DNA damage, were studied in blood lymphocytes of 25 adult patients before and after interventional cardiac procedures. Even though the mean values of all patients as a group for all three endpoints tested show increased yields relative to baseline following medical exposure, our results demonstrate that only the γ-H2AX biomarker enables detection of statistically significant differences at the individual level (p < 0.001) for almost all patients (91%). Furthermore, 24 h after exposure, residual γ-H2AX foci were still detectable in irradiated lymphocytes. Their decline was found to vary significantly among the individuals and the repair kinetics of γ-H2AX foci was found to range from 25 to 95.6% of their maximum values obtained.


Assuntos
Cardiologia , Lesões por Radiação , Adulto , Biomarcadores , Dano ao DNA , Relação Dose-Resposta à Radiação , Histonas/genética , Humanos
4.
Front Public Health ; 9: 675095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123995

RESUMO

While technological advances in radiation oncology have led to a more precise delivery of radiation dose and a decreased risk of side effects, there is still a need to better understand the mechanisms underlying DNA damage response (DDR) at the DNA and cytogenetic levels, and to overcome tumor resistance. To maintain genomic stability, cells have developed sophisticated signaling pathways enabling cell cycle arrest to facilitate DNA repair via the DDR-related kinases and their downstream targets, so that DNA damage or DNA replication stress induced by genotoxic therapies can be resolved. ATM, ATR, and Chk1 kinases are key mediators in DDR activation and crucial factors in treatment resistance. It is of importance, therefore, as an alternative to the conventional clonogenic assay, to establish a cytogenetic assay enabling reliable and time-efficient results in evaluating the potency of DDR inhibitors for radiosensitization. Toward this goal, the present study aims at the development and optimization of a chromosomal radiosensitivity assay using the DDR and G2-checkpoint inhibitors as a novel modification compared to the classical G2-assay. Also, it aims at investigating the strengths of this assay for rapid radiosensitivity assessments in cultured cells, and potentially, in tumor cells obtained from biopsies. Specifically, exponentially growing RPE and 82-6 hTERT human cells are irradiated during the G2/M-phase transition in the presence or absence of Caffeine, VE-821, and UCN-1 inhibitors of ATM/ATR, ATR, and Chk1, respectively, and the induced chromatid breaks are used to evaluate cell radiosensitivity and their potency for radiosensitization. The increased yield of chromatid breaks in the presence of DDR inhibitors, which underpins radiosensitization, is similar to that observed in cells from highly radiosensitive AT-patients, and is considered here as 100% radiosensitive internal control. The results highlight the potential of our modified G2-assay using VE-821 to evaluate cell radiosensitivity, the efficacy of DDR inhibitors in radiosensitization, and reinforce the concept that ATM, ATR, and Chk1 represent attractive anticancer drug targets in radiation oncology.


Assuntos
Cromátides , Reparo do DNA , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Tolerância a Radiação
5.
Cancers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008308

RESUMO

While rapid technological advances in radiotherapy techniques have led to a more precise delivery of radiation dose and to a decreased risk of side effects, there is still a need to evaluate the efficacy of the new techniques estimating the biological dose and to investigate the radiobiological impact of the protracted radiotherapy treatment duration. The aim of this study is to compare, at a cytogenetic level, advanced radiotherapy techniques VMAT and IMRT with the conventional 3D-CRT, using biological dosimetry. A dicentric biodosimetry assay based on the frequency of dicentrics chromosomes scored in peripheral blood lymphocytes from prostate cancer patients and PC3 human prostate cancer cell line was used. For each patient blood sample and each subpopulation of the cultured cell line, three different irradiations were performed using the 3D-CRT, IMRT, and VMAT technique. The absorbed dose was estimated with the biodosimetry method based on the induced dicentric chromosomes. The results showed a statistically significant underestimation of the biological absorbed dose of ~6% for the IMRT and VMAT compared to 3D-CRT irradiations for peripheral blood lymphocytes, whereas IMRT and VMAT results were comparable without a statistically significant difference, although slightly lower values were observed for VMAT compared to IMRT irradiation. Similar results were obtained using the PC3 cell line. The observed biological dose underestimation could be associated with the relative decreased dose rate and increase irradiation time met in modulated techniques compared to the conventional 3D-CRT irradiations.

6.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825012

RESUMO

For precision cancer radiotherapy, high linear energy transfer (LET) particle irradiation offers a substantial advantage over photon-based irradiation. In contrast to the sparse deposition of low-density energy by χ- or γ-rays, particle irradiation causes focal DNA damage through high-density energy deposition along the particle tracks. This is characterized by the formation of multiple damage sites, comprising localized clustered patterns of DNA single- and double-strand breaks as well as base damage. These clustered DNA lesions are key determinants of the enhanced relative biological effectiveness (RBE) of energetic nuclei. However, the search for a fingerprint of particle exposure remains open, while the mechanisms underlying the induction of chromothripsis-like chromosomal rearrangements by high-LET radiation (resembling chromothripsis in tumors) await to be elucidated. In this work, we investigate the transformation of clustered DNA lesions into chromosome fragmentation, as indicated by the induction and post-irradiation repair of chromosomal damage under the dynamics of premature chromosome condensation in G0 human lymphocytes. Specifically, this study provides, for the first time, experimental evidence that particle irradiation induces localized shattering of targeted chromosome domains. Yields of chromosome fragments and shattered domains are compared with those generated by γ-rays; and the RBE values obtained are up to 28.6 for α-particles (92 keV/µm), 10.5 for C-ions (295 keV/µm), and 4.9 for protons (28.5 keV/µm). Furthermore, we test the hypothesis that particle radiation-induced persistent clustered DNA lesions and chromatin decompaction at damage sites evolve into localized chromosome shattering by subsequent chromatin condensation in a single catastrophic event-posing a critical risk for random rejoining, chromothripsis, and carcinogenesis. Consistent with this hypothesis, our results highlight the potential use of shattered chromosome domains as a fingerprint of high-LET exposure, while conforming to the new model we propose for the mechanistic origin of chromothripsis-like rearrangements.

7.
Cancers (Basel) ; 11(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390832

RESUMO

The discovery of chromothripsis in cancer genomes challenges the long-standing concept of carcinogenesis as the result of progressive genetic events. Despite recent advances in describing chromothripsis, its mechanistic origin remains elusive. The prevailing conception is that it arises from a massive accumulation of fragmented DNA inside micronuclei (MN), whose defective nuclear envelope ruptures or leads to aberrant DNA replication, before main nuclei enter mitosis. An alternative hypothesis is that the premature chromosome condensation (PCC) dynamics in asynchronous micronucleated cells underlie chromosome shattering in a single catastrophic event, a hallmark of chromothripsis. Specifically, when main nuclei enter mitosis, premature chromatin condensation provokes the shattering of chromosomes entrapped inside MN, if they are still undergoing DNA replication. To test this hypothesis, the agent RO-3306, a selective ATP-competitive inhibitor of CDK1 that promotes cell cycle arrest at the G2/M boundary, was used in this study to control the degree of cell cycle asynchrony between main nuclei and MN. By delaying the entrance of main nuclei into mitosis, additional time was allowed for the completion of DNA replication and duplication of chromosomes inside MN. We performed interphase cytogenetic analysis using asynchronous micronucleated cells generated by exposure of human lymphocytes to γ-rays, and heterophasic multinucleated Chinese hamster ovary (CHO) cells generated by cell fusion procedures. Our results demonstrate that the PCC dynamics during asynchronous mitosis in micronucleated or multinucleated cells are an important determinant of chromosome shattering and may underlie the mechanistic origin of chromothripsis.

8.
PLoS One ; 14(5): e0216081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31059552

RESUMO

A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3-4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6-8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Linfócitos/efeitos da radiação , Radiometria/métodos , Animais , Células CHO/efeitos da radiação , Fusão Celular , Centrômero/efeitos da radiação , Cricetulus , Feminino , Raios gama/efeitos adversos , Humanos , Hibridização in Situ Fluorescente , Masculino , Lesões por Radiação/diagnóstico , Lesões por Radiação/genética , Radiação Ionizante , Estudos Retrospectivos , Cariotipagem Espectral/métodos , Telômero/efeitos da radiação , Raios X/efeitos adversos
9.
Int J Radiat Oncol Biol Phys ; 103(5): 1184-1193, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529375

RESUMO

PURPOSE: Nontargeted effects of ionizing radiation, by which unirradiated cells and tissues are also damaged, are a relatively new paradigm in radiobiology. We recently reported radiation-induced abscopal effects (RIAEs) in normal tissues; namely, DNA damage, apoptosis, and activation of the local and systemic immune responses in C57BL6/J mice after irradiation of a small region of the body. High-dose-rate, synchrotron-generated broad beam or multiplanar x-ray microbeam radiation therapy was used with various field sizes and doses. This study explores components of the immune system involved in the generation of these abscopal effects. METHODS AND MATERIALS: The following mice with various immune deficiencies were irradiated with the microbeam radiation therapy beam: (1) SCID/IL2γR-/- (NOD SCID gamma, NSG) mice, (2) wild-type C57BL6/J mice treated with an antibody-blocking macrophage colony-stimulating factor 1 receptor, which depletes and alters the function of macrophages, and (3) chemokine ligand 2/monocyte chemotactic protein 1 null mice. Complex DNA damage (ie, DNA double-strand breaks), oxidatively induced clustered DNA lesions, and apoptotic cells in tissues distant from the irradiation site were measured as RIAE endpoints and compared with those in wild-type C57BL6/J mice. RESULTS: Wild-type mice accumulated double-strand breaks, oxidatively induced clustered DNA lesions, and apoptosis, enforcing our RIAE model. However, these effects were completely or partially abrogated in mice with immune disruption, highlighting the pivotal role of the immune system in propagation of systemic genotoxic effects after localized irradiation. CONCLUSIONS: These results underline the importance of not only delineating the best strategies for tumor control but also mitigating systemic radiation toxicity.


Assuntos
Apoptose , Quebras de DNA de Cadeia Dupla , Sistema Imunitário/fisiologia , Lesões Experimentais por Radiação/imunologia , Animais , Efeito Espectador , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , DNA/isolamento & purificação , Feminino , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Estresse Oxidativo , Doses de Radiação , Lesões Experimentais por Radiação/etiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Síncrotrons , Fator de Crescimento Transformador beta1/sangue
10.
Cancer Res ; 77(22): 6389-6399, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113972

RESUMO

The importance of nontargeted (systemic) effects of ionizing radiation is attracting increasing attention. Exploiting synchrotron radiation generated by the Imaging and Medical Beamline at the Australian Synchrotron, we studied radiation-induced nontargeted effects in C57BL/6 mice. Mice were locally irradiated with a synchrotron X-ray broad beam and a multiplanar microbeam radiotherapy beam. To assess the influence of the beam configurations and variations in peak dose and irradiated area in the response of normal tissues outside the irradiated field at 1 and 4 days after irradiation, we monitored oxidatively induced clustered DNA lesions (OCDL), DNA double-strand breaks (DSB), apoptosis, and the local and systemic immune responses. All radiation settings induced pronounced persistent systemic effects in mice, which resulted from even short exposures of a small irradiated area. OCDLs were elevated in a wide variety of unirradiated normal tissues. In out-of-field duodenum, there was a trend for elevated apoptotic cell death under most irradiation conditions; however, DSBs were elevated only after exposure to lower doses. These genotoxic events were accompanied by changes in plasma concentrations of macrophage-derived cytokine, eotaxin, IL10, TIMP1, VEGF, TGFß1, and TGFß2, along with changes in tissues in frequencies of macrophages, neutrophils, and T lymphocytes. Overall, our findings have implications for the planning of therapeutic and diagnostic radiation treatments to reduce the risk of radiation-related adverse systemic effects. Cancer Res; 77(22); 6389-99. ©2017 AACR.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Pele/efeitos da radiação , Síncrotrons , Raios X , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Citocinas/sangue , Citocinas/metabolismo , Relação Dose-Resposta à Radiação , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Pele/imunologia , Pele/metabolismo , Fatores de Tempo
11.
Int J Radiat Biol ; 93(1): 127-135, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27572921

RESUMO

PURPOSE: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. MATERIALS AND METHODS: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. RESULTS: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. CONCLUSIONS: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.


Assuntos
Algoritmos , Bioensaio/métodos , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Triagem/métodos , Teorema de Bayes , Europa (Continente) , Humanos , Guias de Prática Clínica como Assunto , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Int J Radiat Biol ; 93(1): 2-14, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27707245

RESUMO

PURPOSE: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. RESULTS: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. CONCLUSIONS: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.


Assuntos
Bioensaio/métodos , Planejamento em Desastres/organização & administração , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Gestão da Segurança/organização & administração , Emergências , Europa (Continente) , Humanos , Objetivos Organizacionais , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Liberação Nociva de Radioativos/prevenção & controle
13.
Int J Radiat Biol ; 93(1): 15-19, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27778526

RESUMO

PURPOSE: To set up an operational basis of the Realizing the European Network of Biodosimetry (RENEB) network within which the application of seven established biodosimetric tools (the dicentric assay, the FISH assay, the micronucleus assay, the PCC assay, the gamma-H2AX assay, electron paramagnetic resonance and optically stimulated luminescence) will be compared and standardized among the participating laboratories. METHODOLOGY: Two intercomparisons were organized where blood samples and smartphone components were irradiated, coded and sent out to participating laboratories for dosimetric analysis. Moreover, an accident exercise was organized during which each RENEB partner had the chance to practice the procedure of activating the network and to handle large amounts of dosimetric results. RESULTS: All activities were carried out as planned. Overall, the precision of dose estimates improved between intercomparisons 1 and 2, clearly showing the value of running such regular activities. CONCLUSIONS: The RENEB network is fully operational and ready to act in case of a major radiation emergency. Moreover, the high capacity for analyzing radiation-induced damage in cells and personal electronic devices makes the network suitable for large-scale analyses of low doses effects, where high numbers of samples must be scored in order to detect weak effects.


Assuntos
Bioensaio/métodos , Exposição à Radiação/análise , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Emergências , Europa (Continente) , Humanos , Laboratórios/organização & administração , Objetivos Organizacionais , Exposição à Radiação/prevenção & controle , Avaliação da Tecnologia Biomédica
14.
Free Radic Res ; 50(sup1): S64-S78, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593437

RESUMO

Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3-1 keV/µm, α-particles 116 keV/µm and 36Ar ions 270 keV/µm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5-16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Transferência Linear de Energia/genética , Radiação Ionizante , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-26520375

RESUMO

The dual role of caffeine as a chromosomal damage inducer and G2/M-checkpoint abrogator is well known but it is observed mainly at relatively high concentrations. At low concentrations, caffeine enhances the cytogenetic effects of several carcinogens and its intake during pregnancy has been recently reported to cause adverse birth outcomes. Interestingly, a threshold below which this association is not apparent was not identified. Since chromosomal abnormalities and aneuploidy are the major genetic etiologies of spontaneous abortions and adverse birth outcomes, we re-evaluate here the effects of caffeine at the cytogenetic level and propose a model for the mechanisms involved. Our hypothesis is that low caffeine concentrations affect DNA replication and cause chromosomal aberrations and asymmetric cell divisions not easily detected at metaphase since damaged cells are delayed during their G2/M-phase transition and the low caffeine concentrations cannot abrogate the G2-checkpoint. To test this hypothesis, caffeine-induced chromatid breaks and micronuclei in peripheral blood lymphocytes (PBLs) were evaluated in vitro after low caffeine concentration exposures, followed by a short treatment with 4mM of caffeine to abrogate the G2-checkpoint. The results show a statistically significant increase in chromatid breaks at caffeine concentrations ≥1mM. When caffeine was applied for G2/M-checkpoint abrogation, a statistically significant increase in chromatid breaks, compared to an active checkpoint, was only observed at 4mM of caffeine. The potential of low concentrations to induce asymmetric cell divisions was tested by applying a methodology combining the cytochalasin-B mediated cytokinesis-block micronucleus assay (CBMN) with interphase FISH (iFISH), using selected centromeric probes. Interestingly, low caffeine concentrations induce a dose dependent aneuploidy through asymmetric cell divisions, which are caused by misalignment of chromosomes through a mechanism unrelated to the formation of chromatid breaks. The cytogenetic approach used, combining CBMN with iFISH, is proposed as a valuable tool to test chemically induced asymmetric cell divisions.


Assuntos
Cafeína/farmacologia , Divisão Celular/efeitos dos fármacos , Linfócitos/citologia , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Aberrações Cromossômicas , Citocalasina B/farmacologia , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hibridização in Situ Fluorescente , Técnicas In Vitro , Interfase/efeitos da radiação , Linfócitos/efeitos dos fármacos , Testes para Micronúcleos
16.
Artigo em Inglês | MEDLINE | ID: mdl-26520389

RESUMO

Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome condensation induces mechanical stress and triggers shattering and chromothripsis in chromosomes or chromosome arms still undergoing DNA replication or repair in micronuclei or asynchronous multinucleate cells, when primary nuclei enter mitosis.


Assuntos
Núcleo Celular/genética , Cromatina/genética , Citocalasina B/farmacologia , DNA/genética , Mitose , Animais , Células CHO , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos da radiação , Células Cultivadas , Cromatina/efeitos dos fármacos , Cromatina/efeitos da radiação , Aberrações Cromossômicas , Cricetulus , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação
17.
Int J Radiat Oncol Biol Phys ; 91(3): 640-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25596111

RESUMO

PURPOSE: To combine telomere and centromere (TC) staining of premature chromosome condensation (PCC) fusions to identify dicentrics, centric rings, and acentric chromosomes, making possible the realization of a dose-response curve and automation of the process. METHODS AND MATERIALS: Blood samples from healthy donors were exposed to (60)Co irradiation at varying doses up to 8 Gy, followed by a repair period of 8 hours. Premature chromosome condensation fusions were carried out, and TC staining using peptide nucleic acid probes was performed. Chromosomal aberration (CA) scoring was carried out manually and automatically using PCC-TCScore software, developed in our laboratory. RESULTS: We successfully optimized the hybridization conditions and image capture parameters, to increase the sensitivity and effectiveness of CA scoring. Dicentrics, centric rings, and acentric chromosomes were rapidly and accurately detected, leading to a linear-quadratic dose-response curve by manual scoring at up to 8 Gy. Using PCC-TCScore software for automatic scoring, we were able to detect 95% of dicentrics and centric rings. CONCLUSION: The introduction of TC staining to the PCC fusion technique has made possible the rapid scoring of unstable CAs, including dicentrics, with a level of accuracy and ease not previously possible. This new approach can be used for biological dosimetry in radiation emergency medicine, where the rapid and accurate detection of dicentrics is a high priority using automated scoring. Because there is no culture time, this new approach can also be used for the follow-up of patients treated by genotoxic therapy, creating the possibility to perform the estimation of induced chromosomal aberrations immediately after the blood draw.


Assuntos
Centrômero/genética , Aberrações Cromossômicas , Linfócitos/efeitos da radiação , Coloração e Rotulagem , Telômero , Radioisótopos de Cobalto , Reparo do DNA , Relação Dose-Resposta à Radiação , Humanos , Metáfase , Doses de Radiação , Fatores de Tempo
18.
Cancer Lett ; 356(1): 34-42, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24333869

RESUMO

Radiation-induced bystander effects (RIBE), demonstrate the induction of biological non-targeted effects in cells which have not directly hit by radiation or by free radicals produced by ionization events. Although RIBE have been demonstrated using a variety of biological endpoints the mechanism(s) of this phenomenon still remain unclear. The controversial results of the in vitro RIBE and the evidence of non-targeted effects in various in vivo systems are discussed. The experimental evidence on RIBE, indicate that a more analytical and mechanistic in depth approach is needed to secure an answer to one of the most intriguing questions in radiobiology.


Assuntos
Efeito Espectador/efeitos da radiação , Citocinas/metabolismo , Dano ao DNA/efeitos da radiação , DNA/efeitos da radiação , Lesões por Radiação , Animais , Apoptose/efeitos da radiação , Arabidopsis/efeitos da radiação , Cricetinae , Citocinas/biossíntese , Instabilidade Genômica/efeitos da radiação , Humanos , Camundongos , Oncorhynchus mykiss , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Radiobiologia/tendências , Ratos , Transdução de Sinais , Peixe-Zebra
19.
Toxicol Mech Methods ; 23(5): 303-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23215871

RESUMO

The study of carcinogenic potential of a variety of chemical agents such as food additives and drugs of abuse via the application of various in vitro methodologies constitutes the first step for the evaluation of their toxicogenomic profile. Considering the chromosomal theories of carcinogenesis, where it is stated that aneuploidy and chromosomal imbalance (instability) are among the main causes of carcinogenesis, chemicals capable to induce such changes in the cells could be considered as potential carcinogens. Chromosomal imbalance and aneuploidy directly affect the overall DNA content of the exposed cell as well as other cellular morpho- and densitometric features. These features can be measured by means of computerized DNA image analysis technologies and include DNA content (DNA Index), Proliferation Index, Ploidy Balance, Degree of Aneuploidy, Skewness and Kurtosis. Considering the enormous number of untested chemicals and drugs of abuse that follow non-genotoxic mechanisms of carcinogenesis, the establishment of a reliable technology for the estimation of chemically induced chromosomal imbalance is of particular importance in toxicogenomic studies. In the present article and based on our previously published work, we highlight the advantages of the applications of DNA image analysis technology in an easy-to-use experimental model for the evaluation of the potential risk of various chemicals. The use of this technology for the detection of chemically induced chromosomal instability will contribute to the development of safer regulatory directives concerning the use of chemicals in food and pharmaceutical industry, as well as in the clarification of mechanisms of action of drugs of abuse.


Assuntos
Instabilidade Cromossômica , DNA/genética , Toxicogenética , Animais , Humanos
20.
Med Hypotheses ; 80(1): 70-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23111201

RESUMO

Cancer development is an evolutionary process that has been highly conserved among centuries within organisms. Based on this, the interest in cancer research focuses on cells, organelles and genes that possess a genetic conservatism from yeasts to human. Towards this thought, mitochondria, the highly conserved and responsible for the cellular bioenergetic activity organelles, might play crucial role in carcinogenesis. Interestingly, tumors with low bioenergetic signature have worse prognosis and show a decreased expression of ATPase protein. Furthermore, according to the stem-cell theory of carcinogenesis, aggressive tumors are characterized by an increase number of malignant stem-like cell population and their resistance to chemotherapy has been found to be mitochondrially driven. The above considerations triggered us to hypothesize that mitochondrial bioenergetic processes in stem-like cancer cells plays a crucial role in the highly conserved process of carcinogenesis. Specifically, we support that mitochondrial and/or nuclear DNA alterations that control stem cells' ATP production drive stem cells to "immortalization" (Otto Warburg theory) that mediates cancer initiation and progression. Substantiation of our hypothesis requires evidence that: (1) alterations in mitochondria bioenergetic metabolites and enzymes encoded either from the mtDNA or the nuclear DNA are linked to human cancer and (2) mitochondrial functions are regulated by highly conserved genes involved in cancer-related cellular processes such as apoptosis, aging and autophagy. Experimental approach on how this hypothesis might be tested and promising strategies in cancer therapeutics are also discussed. In case the hypothesis of stem-cell bioenergetic malformations' related carcinogenesis proves to be correct, it would contribute to the development of new prognostic, diagnostic and even more effective therapeutic interventions against various types of cancer.


Assuntos
Trifosfato de Adenosina/metabolismo , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/fisiologia , Neoplasias/fisiopatologia , Células-Tronco Neoplásicas/fisiologia , Apoptose/fisiologia , Autofagia/fisiologia , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA