Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Pharmaceutics ; 16(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794272

RESUMO

Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.

2.
NAR Genom Bioinform ; 6(2): lqae033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633426

RESUMO

In the rapidly evolving field of genomics, understanding the genetic basis of complex diseases like breast cancer, particularly its familial/hereditary forms, is crucial. Current methods often examine genomic variants-such as Single Nucleotide Variants (SNVs), insertions/deletions (Indels), and Copy Number Variations (CNVs)-separately, lacking an integrated approach. Here, we introduced a robust, flexible methodology for a comprehensive variants' analysis using Whole Exome Sequencing (WES) data. Our approach uniquely combines meticulous validation with an effective variant filtering strategy. By reanalyzing two germline WES datasets from BRCA1/2 negative breast cancer patients, we demonstrated our tool's efficiency and adaptability, uncovering both known and novel variants. This contributed new insights for potential diagnostic, preventive, and therapeutic strategies. Our method stands out for its comprehensive inclusion of key genomic variants in a unified analysis, and its practical resolution of technical challenges, offering a pioneering solution in genomic research. This tool presents a breakthrough in providing detailed insights into the genetic alterations in genomes, with significant implications for understanding and managing hereditary breast cancer.

3.
Biomedicines ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672070

RESUMO

Hereditary breast and ovarian cancer (HBOC) syndrome is responsible for approximately 10% of breast cancers (BCs). The HBOC gene panel includes both high-risk genes, i.e., a four times higher risk of BC (BRCA1, BRCA2, PALB2, CDH1, PTEN, STK11 and TP53), and moderate-risk genes, i.e., a two to four times higher risk of BC (BARD1, CHEK2, RAD51C, RAD51D and ATM). Pathogenic germline variants (PGVs) in HBOC genes confer an absolute risk of BC that changes according to the gene considered. We illustrate and compare different BC risk estimation models, also describing their limitations. These models allow us to identify women eligible for genetic testing and possibly to offer surgical strategies for primary prevention, i.e., risk-reducing mastectomies and salpingo-oophorectomies.

4.
Biomedicines ; 12(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38255284

RESUMO

Pertuzumab and trastuzumab have been shown to improve the outcomes of patients with metastatic breast cancer, with a rate of left ventricular dysfunction of approximately 6%. We report the case of a postmenopausal woman who presented with Takotsubo syndrome during maintenance therapy with pertuzumab and trastuzumab, in association with fulvestrant (an anti-estrogen) and denosumab. After normalization of cardiac function, therapy with pertuzumab and trastuzumab was resumed in the absence of new cardiac toxicity. We report the first clinical case of Takotsubo syndrome during double anti-HER2 blockade in association with an antiestrogen. Furthermore, we show how anti-HER2 therapy can be safely resumed after the detection of Takotsubo syndrome.

5.
J Transl Med ; 21(1): 836, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990214

RESUMO

BACKGROUND: Machine learning (ML) represents a powerful tool to capture relationships between molecular alterations and cancer types and to extract biological information. Here, we developed a plain ML model aimed at distinguishing cancer types based on genetic lesions, providing an additional tool to improve cancer diagnosis, particularly for tumors of unknown origin. METHODS: TCGA data from 9,927 samples spanning 32 different cancer types were downloaded from cBioportal. A vector space model type data transformation technique was designed to build consistently homogeneous new datasets containing, as predictive features, calls for somatic point mutations and copy number variations at chromosome arm-level, thus allowing the use of the XGBoost classifier models. Considering the imbalance in the dataset, due to large difference in the number of cases for each tumor, two preprocessing strategies were considered: i) setting a percentage cut-off threshold to remove less represented cancer types, ii) dividing cancer types into different groups based on biological criteria and training a specific XGBoost model for each of them. The performance of all trained models was mainly assessed by the out-of-sample balanced accuracy (BACC) and the AUC scores. RESULTS: The XGBoost classifier achieved the best performance (BACC 77%; AUC 97%) on a dataset containing the 10 most represented tumor types. Moreover, dividing the 18 most represented cancers into three different groups (endocrine-related carcinomas, other carcinomas and other cancers),such analysis models achieved 78%, 71% and 86% BACC, respectively, with AUC scores greater than 96%. In addition, the model capable of linking each group to a specific cancer type reached 81% BACC and 94% AUC. Overall, the diagnostic potential of our model was comparable/higher with respect to others already described in literature and based on similar molecular data and ML approaches. CONCLUSIONS: A boosted ML approach able to accurately discriminate different cancer types was developed. The methodology builds datasets simpler and more interpretable than the original data, while keeping enough information to accurately train standard ML models without resorting to sophisticated Deep Learning architectures. In combination with histopathological examinations, this approach could improve cancer diagnosis by using specific DNA alterations, processed by a replicable and easy-to-use automated technology. The study encourages new investigations which could further increase the classifier's performance, for example by considering more features and dividing tumors into their main molecular subtypes.


Assuntos
Carcinoma , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Aprendizado de Máquina , Genômica
6.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298191

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered a relevant liver chronic disease. Variable percentages of NAFLD cases progress from steatosis to steatohepatitis (NASH), cirrhosis and, eventually, hepatocellular carcinoma (HCC). In this study, we aimed to deepen our understanding of expression levels and functional relationships between miR-182-5p and Cyld-Foxo1 in hepatic tissues from C57BL/6J mouse models of diet-induced NAFL/NASH/HCC progression. A miR-182-5p increase was detected early in livers as NAFLD damage progressed, and in tumors compared to peritumor normal tissues. An in vitro assay on HepG2 cells confirmed Cyld and Foxo1, both tumor-suppressor, as miR-182-5p target genes. According to miR-182-5p expression, decreased protein levels were observed in tumors compared to peritumor tissues. Analysis of miR-182-5p, Cyld and Foxo1 expression levels, based on datasets from human HCC samples, showed results consistent with those from our mouse models, and also highlighted the ability of miR-182-5p to distinguish between normal and tumor tissues (AUC 0.83). Overall, this study shows, for the first time, miR-182-5p overexpression and Cyld-Foxo1 downregulation in hepatic tissues and tumors from a diet-induced NAFLD/HCC mouse model. These data were confirmed by the analysis of datasets from human HCC samples, highlighting miR-182-5p diagnostic accuracy and demonstrating the need for further studies to assess its potential role as a biomarker or therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta , Proteína Forkhead Box O1/genética
7.
J Cancer Res Clin Oncol ; 149(10): 7689-7701, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37000265

RESUMO

PURPOSE: Tau/MAPT (microtubule associated protein tau) protein is actively studied for the pathologic consequences of its aberrant proteostasis in central nervous system leading to neurodegenerative diseases. Besides its ability to generate insoluble toxic oligomers, Tau homeostasis has attracted attention for its involvement in the formation of the mitotic spindle. This evidence, in association with the description of Tau expression in extra-neuronal tissues, and mainly in cancer tissues, constitutes the rationale for a more in-depth investigation of Tau role also in neoplastic diseases. METHODS: In our study, we investigated the expression of phosphorylated Tau in prostate cancer cell lines with particular focus on the residue Thr231 present in microtubule binding domain. RESULTS: The analysis of prostate cancer cells synchronized with nocodazole demonstrated that the expression of Tau protein phosphorylated at residue Thr231 is restricted to G2/M cell cycle phase. The phosphorylated form was unable to bind tubulin and it does not localize on mitotic spindle. As demonstrated by the use of specific inhibitors, the phosphorylation status of Tau is under the direct control of cdk5 and PP2A, while cdk1 activation was able to exert an indirect control. These mechanisms were also active in cells treated with docetaxel, where counteracting the expression of the dephosphorylated form, by kinase inhibition or protein silencing, determined resistance to drug toxicity. CONCLUSIONS: We hypothesize that phosphorylation status of Tau is a key marker for G2/M phase in prostate cancer cells and that the forced modulation of Tau phosphorylation can interfere with the capacity of cell to efficiently progress through G2/M phase.


Assuntos
Neoplasias da Próstata , Proteínas tau , Masculino , Humanos , Fosforilação , Mitose , Nocodazol/farmacologia , Ciclo Celular
8.
Cancers (Basel) ; 15(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36980613

RESUMO

Molecular tumor boards (MTBs) are multidisciplinary groups that combine molecular and clinical data from cancer patients in order to formulate treatment recommendations for precision medicine. To date, there is insufficient data to support the use of singleplex or next-generation sequencing (NGS) technologies to select first-line therapy for patients with metastatic breast cancer (MBC), but considering the high number of level II alterations, according to the ESMO scale for clinical actionability of molecular targets (ESCAT), it is suggested to include patients in molecular screening programs in order to be able to offer targeted therapies for specific genomic alterations. This article aims at reviewing the most recent literature related to the most used methodologies/approaches for molecular diagnostics and variants' classification, summarizing the internationally published molecular screening studies in support of MTB activity and, in the end, discussing MTBs' current position and role in Italy, the number of which is increasing, also thanks to the thrust of institutions.

9.
Front Oncol ; 12: 940056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912267

RESUMO

Extracellular vesicles (EVs), defined as intercellular messengers that carry their cargos between cells, are involved in several physiological and pathological processes. These small membranous vesicles are released by most cells and contain biological molecules, including nucleic acids, proteins and lipids, which can modulate signaling pathways of nearby or distant recipient cells. Exosomes, one the most characterized classes of EVs, include, among others, microRNAs (miRNAs), small non-coding RNAs able to regulate the expression of several genes at post-transcriptional level. In cancer, exosomal miRNAs have been shown to influence tumor behavior and reshape tumor microenvironment. Furthermore, their possible involvement in drug resistance mechanisms has become evident in recent years. Hepatocellular carcinoma (HCC) is the major type of liver cancer, accounting for 75-85% of all liver tumors. Although the improvement in HCC treatment approaches, low therapeutic efficacy in patients with intermediate-advanced HCC is mainly related to the development of tumor metastases, high risk of recurrence and drug resistance. Exosomes have been shown to be involved in pathogenesis and progression of HCC, as well as in drug resistance, by regulating processes such as cell proliferation, epithelial-mesenchymal transition and immune response. Herein, we summarize the current knowledge about the involvement of exosomal miRNAs in HCC therapy, highlighting their role as modulators of therapeutic response, particularly chemotherapy and immunotherapy, as well as possible therapeutic tools.

10.
Cancers (Basel) ; 14(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740668

RESUMO

HER2 is considered one of the most traditional prognostic and predictive biomarkers in breast cancer. Literature data confirmed that the addition of pertuzumab to a standard neoadjuvant chemotherapy backbone (either with or without anthracyclines), in patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC), leads to a higher pathological complete response (pCR) rate, which is known to correlate with a better prognosis. In this retrospective analysis, 47 consecutive patients with HER2-positive EBC received sequential anthracyclines and taxanes plus trastuzumab (ATH) or pertuzumab, trastuzumab and docetaxel (THP). Despite the limited sample size, this monocentric experience highlights the efficacy (in terms of pCR) and safety of THP in the neoadjuvant setting of HER2-positive EBC as an anthracycline-free approach. Given the role of PIK3CA as a prognostic and therapeutic target in breast cancer, tumors were also analyzed to assess the PIK3CA mutational status. Thirty-eight out of forty-seven patients were evaluated, and PIK3CA variants were identified in 21% of tumor samples: overall, one mutation was detected in exon 4 (2.6%), two in exon 9 (5.3%) and four in exon 20 (10.5%). Of note, one sample showed concurrent mutations in exons 9 (codon 545) and 20 (codon 1047). Among patients reaching pCR (n = 13), 38.5% were PIK3CA mutants; on the other hand, among those lacking pCR (n = 25), just 12% showed PIK3CA variants. Regarding THP-treated mutant patients (n = 5), 80% reached pCR (three hormone-receptor-negative, one hormone-receptor-positive). Interestingly, the only patient not achieving pCR had a tumor with two co-occurring PIK3CA mutations. In conclusion, this study provides new evidence about the efficacy and good safety profile of THP, compared to the ATH regimen, as an anthracycline-free neoadjuvant treatment of HER2-positive EBC. Further studies on larger/multicentric cohorts are planned for more in-depth analysis to confirm our molecular and clinical results.

11.
Front Oncol ; 12: 863639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463316

RESUMO

The assessment of RAS and BRAF mutational status is one of the main steps in the diagnostic and therapeutic algorithm of metastatic colorectal cancer (mCRC). Multiple mutations in the BRAF and RAS pathway are described as a rare event, with concurrent variants in KRAS and BRAF genes observed in approximately 0.05% of mCRC cases. Here, we report data from a case series affected by high-risk stage III and stage IV CRC and tested for RAS and BRAF mutation, treated at our Medical Oncology Unit. The analysis of KRAS, NRAS (codons 12, 13, 59, 61, 117, 146), and BRAF (codon 600) hotspot variants was performed in 161 CRC tumors from August 2018 to September 2021 and revealed three (1.8%) patients showing mutations in both KRAS and BRAF (V600E), including two cases with earlier CRC and one with metastatic disease. We also identified one patient (0.6%) with a mutation in both KRAS and NRAS genes and another one (0.6%) with a double KRAS mutation. Notably, the latter was characterized by aggressive behavior and poor clinical outcome. The mutational status, pathological features, and clinical history of these five CRC cases are described. Overall, this study case series adds evidence to the limited available literature concerning both the epidemiological and clinical aspects of CRC cases characterized by the presence of concurrent RAS/BRAF variants. Future multicentric studies will be required to increase the sample size and provide additional value to results observed so far in order to improve clinical management of this subgroup of CRC patients.

12.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408969

RESUMO

PURPOSE: Nerve growth factor efficacy was demonstrated for corneal lesions treatment, and recombinant human NGF (rhNGF) was approved for neurotrophic keratitis therapy. However, NGF-induced molecular responses in cornea are still largely unknown. We analyzed microRNAs expression in human epithelial corneal cells after time-dependent rhNGF treatment. METHODS: Nearly 700 microRNAs were analyzed by qRT-PCR. MicroRNAs showing significant expression differences were examined by DIANA-miRpath v.3.0 to identify target genes and pathways. Immunoblots were performed to preliminarily assess the strength of the in silico results. RESULTS: Twenty-one microRNAs (miR-26a-1-3p, miR-30d-3p, miR-27b-5p, miR-146a-5p, miR-362-5p, mir-550a-5p, mir-34a-3p, mir-1227-3p, mir-27a-5p, mir-222-5p, mir-151a-5p, miR-449a, let7c-5p, miR-337-5p, mir-29b-3p, miR-200b-3p, miR-141-3p, miR-671-3p, miR-324-5p, mir-411-3p, and mir-425-3p) were significantly regulated in response to rhNGF. In silico analysis evidenced interesting target genes and pathways, including that of neurotrophin, when analyzed in depth. Almost 80 unique target genes (e.g., PI3K, AKT, MAPK, KRAS, BRAF, RhoA, Cdc42, Rac1, Bax, Bcl2, FasL) were identified as being among those most involved in neurotrophin signaling and in controlling cell proliferation, growth, and apoptosis. AKT and RhoA immunoblots demonstrated congruence with microRNA expression, providing preliminary validation of in silico data. CONCLUSIONS: MicroRNA levels in response to rhNGF were for the first time analyzed in corneal cells. Novel insights about microRNAs, target genes, pathways modulation, and possible biological responses were provided. Importantly, given the putative role of microRNAs as biomarkers or therapeutic targets, our results make available data which might be potentially exploitable for clinical applications.


Assuntos
MicroRNAs , Fator de Crescimento Neural , Córnea/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
13.
Genes (Basel) ; 12(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828332

RESUMO

The detection of circulating microRNA (miRNA)-based biomarkers represents an innovative, non-invasive method for the early detection of cancer. However, the low concentration of miRNAs released in body fluids and the difficult identification of the tumor site have limited their clinical use as effective cancer biomarkers. To evaluate if ultrasound treatment could amplify the release of extracellular cancer biomarkers, we treated a panel of prostate cancer (PCa) cell lines with an ultrasound-based prototype and profiled the release of miRNAs in the extracellular space, with the aim of identifying novel miRNA-based biomarkers that could be used for PCa diagnosis and the monitoring of tumor evolution. We provide evidence that US-mediated sonoporation amplifies the release of miRNAs from both androgen-dependent (AD) and -independent (AI) PCa cells. We identified four PCa-related miRNAs, whose levels in LNCaP and DU145 supernatants were significantly increased following ultrasound treatment: mir-629-5p, mir-374-5p, mir-194-5p, and let-7d-5p. We further analyzed a publicly available dataset of PCa, showing that the serum expression of these novel miRNAs was upregulated in PCa patients compared to controls, thus confirming their clinical relevance. Our findings highlight the potential of using ultrasound to identify novel cell-free miRNAs released from cancer cells, with the aim of developing new biomarkers with diagnostic and predictive value.


Assuntos
Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Neoplasias da Próstata/genética , Ondas Ultrassônicas/efeitos adversos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Células PC-3
14.
Genes (Basel) ; 12(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34573429

RESUMO

The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.


Assuntos
MicroRNAs/fisiologia , Neoplasias/genética , Animais , Exorribonucleases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/classificação , Edição de RNA
15.
J Pers Med ; 10(3)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842653

RESUMO

Breast cancer (BC) is a common and heterogeneous disease, of which six molecular subtypes, characterized by different biological features and clinical outcomes, were described. The identification of additional biomarkers able to further connote and distinguish the different BC subtypes is essential to improve the diagnostic, prognostic and therapeutic strategies in BC patients. MicroRNAs (miRNAs) are short non-coding RNA involved in several physiological and pathological processes, including cancer development and progression. In particular, circulating miRNAs, which can be found in an adequately stable structure in serum/plasma of cancer patients, are emerging as very promising non-invasive biomarkers. Several studies have analyzed the potential role of circulating miRNAs as prognostic and therapeutic markers in BC. In the present review we describe circulating miRNAs, identified as putative biomarker in BC, with special reference to different BC molecular subtypes.

16.
Oncoimmunology ; 9(1): 1710389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002308

RESUMO

Background: We investigate the role of family history of cancer (FHC) and diagnosis of metachronous and/or synchronous multiple neoplasms (MN), during anti-PD-1/PD-L1 immunotherapy. Design: This was a multicenter retrospective study of advanced cancer patients treated with anti-PD-1/PD-L1 immunotherapy. FHC was collected in lineal and collateral lines, and patients were categorized as follows: FHC-high (in case of cancer diagnoses in both the lineal and collateral family lines), FHC-low (in case of cancer diagnoses in only one family line), and FHC-negative. Patients were also categorized according to the diagnosis of MN as follows: MN-high (>2 malignancies), MN-low (two malignancies), and MN-negative. Objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and incidence of immune-related adverse events (irAEs) of any grade were evaluated. Results: 822 consecutive patients were evaluated. 458 patients (55.7%) were FHC-negative, 289 (35.2%) were FHC-low, and 75 (9.1%) FHC-high, respectively. 29 (3.5%) had a diagnosis of synchronous MN and 94 (11.4%) of metachronous MN. 108 (13.2%) and 15 (1.8%) patients were MN-low and MN-high, respectively. The median follow-up was 15.6 months. No significant differences were found regarding ORR among subgroups. FHC-high patients had a significantly longer PFS (hazard ratio [HR] = 0.69 [95% CI: 0.48-0.97], p = .0379) and OS (HR = 0.61 [95% CI: 0.39-0.93], p = .0210), when compared to FHC-negative patients. FHC-high was confirmed as an independent predictor for PFS and OS at multivariate analysis. No significant differences were found according to MN categories. FHC-high patients had a significantly higher incidence of irAEs of any grade, compared to FHC-negative patients (p = .0012). Conclusions: FHC-high patients seem to benefit more than FHC-negative patients from anti-PD-1/PD-L1 checkpoint inhibitors.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Antineoplásicos Imunológicos/efeitos adversos , Antígeno B7-H1/genética , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/diagnóstico , Receptor de Morte Celular Programada 1/uso terapêutico , Estudos Retrospectivos
17.
High Throughput ; 9(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936873

RESUMO

Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.

18.
Front Public Health ; 8: 594789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520915

RESUMO

Low radiation doses can affect and modulate cell responses to various stress stimuli, resulting in perturbations leading to resistance or sensitivity to damage. To explore possible mechanisms taking place at an environmental radiation exposure, we set-up twin biological models, one growing in a low radiation environment (LRE) laboratory at the Gran Sasso National Laboratory, and one growing in a reference radiation environment (RRE) laboratory at the Italian National Health Institute (Istituto Superiore di Sanità, ISS). Studies were performed on pKZ1 A11 mouse hybridoma cells, which are derived from the pKZ1 transgenic mouse model used to study the effects of low dose radiation, and focused on the analysis of cellular/molecular end-points, such as proliferation and expression of key proteins involved in stress response, apoptosis, and autophagy. Cells cultured up to 4 weeks in LRE showed no significant differences in proliferation rate compared to cells cultured in RRE. However, caspase-3 activation and PARP1 cleavage were observed in cells entering to an overgrowth state in RRE, indicating a triggering of apoptosis due to growth-stress conditions. Notably, in LRE conditions, cells responded to growth stress by switching toward autophagy. Interestingly, autophagic signaling induced by overgrowth in LRE correlated with activation of p53. Finally, the gamma component of environmental radiation did not significantly influence these biological responses since cells grown in LRE either in incubators with or without an iron shield did not modify their responses. Overall, in vitro data presented here suggest the hypothesis that environmental radiation contributes to the development and maintenance of balance and defense response in organisms.


Assuntos
Apoptose , Autofagia , Animais , Raios gama , Itália , Camundongos , Transdução de Sinais
19.
Sci Rep ; 9(1): 19623, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873117

RESUMO

Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.


Assuntos
Diferenciação Celular , Cerebelo/metabolismo , Proteínas Hedgehog , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Receptor Smoothened , Animais , Cerebelo/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
20.
Sci Rep ; 9(1): 7144, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073190

RESUMO

Systemic Sclerosis (SSc) is a disease with limited therapeutic possibilities. Mesenchymal stem cells (MSCs)-therapy could be a promising therapeutic option, however the ideal MSCs source has not yet been found. To address this problem, we perform comparison between bone marrow (BM)-MSCs and adipose (A)-MSCs, by the miRs expression profile, to identify the gene modulation in these two MSCs source. MicroRNAs (miRs) are RNAs sequences, regulating gene expression and MSCs, derived from different tissues, may differently respond to the SSc microenvironment. The miRs array was used for the miRs profiling and by DIANA-mirPath tool we identified the biological functions of the dysregulated miRs. In SSc-BM-MSCs, 6 miRs were significantly down-regulated and 4 miRs up-regulated. In SSc-A-MSCs, 11 miRs were significantly down-regulated and 3 miRs up-regulated. Interestingly, in both the sources, the involved pathways included the senescence mechanisms and the pro-fibrotic behaviour. Furthermore, both the MSCs sources showed potential compensatory ability. A deeper knowledge of this miRs signature might give more information about some pathogenic steps of the disease and in the same time clarify the possible therapeutic role of autologous MSCs in the regenerative therapy in SSc.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Escleroderma Sistêmico/genética , Tecido Adiposo/química , Adulto , Células da Medula Óssea/química , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células-Tronco Mesenquimais/química , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA