Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Handb Clin Neurol ; 144: 199-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28947118

RESUMO

Huntington disease (HD), an inherited neurodegenerative disease, results from a CAG repeat expansion creating mutant huntingtin protein and widespread neuronal damage. Motor symptoms such as chorea are often preceded by cognitive and behavioral changes. Tetrabenazine and deutetrabebenazine are the two drugs approved by the Federal Food and Drug Administrationfor HD symptoms, is an effective therapy for chorea. However, there is still a large need for other symptomatic therapies impacting functional issues, including impaired gait, behavioral, and cognitive symptoms. A number of pharmacologic agents are under investigation. Additionally, other mechanisms are being targeted in motor symptom drug development, including phosphodiesterase 10 enzyme inhibition, dopamine modulation, and inhibition of deacetylation. There is perhaps the greatest unmet need in treating nonmotor effects, such as cognition and change in disease course. PBT2, a metal chaperone, and latrepirdine, a mitochondrial stabilizer, are under investigation specifically for the possibility of cognitive benefit. Unfortunately, there is a lack of HD-specific evidence on effective treatments for behavioral and psychiatric symptoms. Further investigation of nonmedication interventions such as physical therapy is necessary. As our understanding of molecular and cellular mechanisms underlying HD broadens, a new set of mechanistic targets will become the focus of HD symptomatic therapies.


Assuntos
Doença de Huntington/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Humanos , Doença de Huntington/complicações , Doença de Huntington/genética , Transtornos dos Movimentos/tratamento farmacológico
2.
J Neurochem ; 100(6): 1469-79, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17241123

RESUMO

Parkinson's disease (PD) has been linked to mitochondrial dysfunction and pesticide exposure. The pesticide rotenone (ROT) inhibits complex I and reproduces features of PD in animal models, suggesting that environmental agents that inhibit complex I may contribute to PD. We have previously demonstrated that ROT toxicity is dependent upon complex I inhibition and that oxidative stress is the primary mechanism of toxicity. In this study, we examined the in vitro toxicity and mechanism of action of several putative complex I inhibitors that are commonly used as pesticides. The rank order of toxicity of pesticides to neuroblastoma cells was pyridaben > rotenone > fenpyroximate > fenazaquin > tebunfenpyrad. A similar order of potency was observed for reduction of ATP levels and competition for (3)H-dihydrorotenone (DHR) binding to complex I, with the exception of pyridaben (PYR). Neuroblastoma cells stably expressing the ROT-insensitive NADH dehydrogenase of Saccharomyces cerevisiae (NDI1) were resistant to these pesticides, demonstrating the requirement of complex I inhibition for toxicity. We further found that PYR was a more potent inhibitor of mitochondrial respiration and caused more oxidative damage than ROT. The oxidative damage could be attenuated by NDI1 or by the antioxidants alpha-tocopherol and coenzyme Q(10). PYR was also highly toxic to midbrain organotypic slices. These data demonstrate that, in addition to ROT, several commercially used pesticides directly inhibit complex I, cause oxidative damage, and suggest that further study is warranted into environmental agents that inhibit complex I for their potential role in PD.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Técnicas In Vitro , Masculino , Mesencéfalo/ultraestrutura , NADH Desidrogenase/farmacologia , Neuroblastoma , Praguicidas/química , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Rotenona/análogos & derivados , Rotenona/farmacocinética , Proteínas de Saccharomyces cerevisiae/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Tocoferol/farmacologia
3.
J Neurosci ; 23(34): 10756-64, 2003 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-14645467

RESUMO

Exposure of rats to the pesticide and complex I inhibitor rotenone reproduces features of Parkinson's disease, including selective nigrostriatal dopaminergic degeneration and alpha-synuclein-positive cytoplasmic inclusions (Betarbet et al., 2000; Sherer et al., 2003). Here, we examined mechanisms of rotenone toxicity using three model systems. In SK-N-MC human neuroblastoma cells, rotenone (10 nm to 1 microm) caused dose-dependent ATP depletion, oxidative damage, and death. To determine the molecular site of action of rotenone, cells were transfected with the rotenone-insensitive single-subunit NADH dehydrogenase of Saccharomyces cerevisiae (NDI1), which incorporates into the mammalian ETC and acts as a "replacement" for endogenous complex I. In response to rotenone, NDI1-transfected cells did not show mitochondrial impairment, oxidative damage, or death, demonstrating that these effects of rotenone were caused by specific interactions at complex I. Although rotenone caused modest ATP depletion, equivalent ATP loss induced by 2-deoxyglucose was without toxicity, arguing that bioenergetic defects were not responsible for cell death. In contrast, reducing oxidative damage with antioxidants, or by NDI1 transfection, blocked cell death. To determine the relevance of rotenone-induced oxidative damage to dopaminergic neuronal death, we used a chronic midbrain slice culture model. In this system, rotenone caused oxidative damage and dopaminergic neuronal loss, effects blocked by alpha-tocopherol. Finally, brains from rotenone-treated animals demonstrated oxidative damage, most notably in midbrain and olfactory bulb, dopaminergic regions affected by Parkinson's disease. These results, using three models of increasing complexity, demonstrate the involvement of oxidative damage in rotenone toxicity and support the evaluation of antioxidant therapies for Parkinson's disease.


Assuntos
Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Rotenona/toxicidade , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/toxicidade , Humanos , Técnicas In Vitro , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Ratos , Ratos Endogâmicos Lew , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA