Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38564376

RESUMO

RATIONALE: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. OBJECTIVES: To determine and correlate single-cell UC-MSC transcriptomic profile with therapeutic potential. METHODS: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs, control cells of mesenchymal origin) transcriptomes were investigated by single-cell RNA sequencing analysis (scRNA-seq). The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. MEASUREMENTS AND MAIN RESULTS: UC-MSCs showed limited transcriptomic heterogeneity, but were different from HNDFs. Gene ontology enrichment analysis revealed distinct - progenitor-like and fibroblast-like - UC-MSC subpopulations. Only the treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of non-therapeutic cells and associated with decreased lung retention. CONCLUSIONS: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.

2.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664752

RESUMO

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Assuntos
Dependovirus , Vetores Genéticos , Poloxâmero , Animais , Humanos , Células HEK293 , Poloxâmero/farmacologia , Poloxâmero/química , Camundongos , Dependovirus/genética , Vetores Genéticos/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Temperatura , Genes Reporter
3.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37805711

RESUMO

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Assuntos
Doxiciclina , Edição de Genes , Camundongos , Animais , Dependovirus/genética , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , Tensoativos/metabolismo , Sistemas CRISPR-Cas
4.
Pediatr Res ; 94(5): 1631-1638, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37380752

RESUMO

Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.


Assuntos
Células-Tronco Mesenquimais , Placenta , Recém-Nascido , Lactente , Humanos , Feminino , Gravidez , Recém-Nascido Prematuro
5.
Semin Perinatol ; 47(3): 151724, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36967368

RESUMO

Lung diseases are a main cause of mortality and morbidity in neonates. Despite major breakthroughs, therapies remain supportive and, in some instances, contribute to lung injury. Because the neonatal lung is still developing, the ideal therapy should be capable of preventing/repairing lung injury while at the same time, promoting lung growth. Cell-based therapies hold high hopes based on laboratory experiments in animal models of neonatal lung injury. Mesenchymal stromal cells and amnion epithelial cells are now in early phase clinical trials to test the feasibility, safety and early signs of efficacy in preterm infants at risk of developing bronchopulmonary dysplasia. Other cell-based therapies are being explored in experimental models of congenital diaphragmatic hernia and alveolar capillary dysplasia. This review will summarize current evidence that has lead to the clinical translation of cell-based therapies and highlights controversies and the numerous questions that remain to be addressed to harness the putative repair potential of cell-based therapies.


Assuntos
Displasia Broncopulmonar , Doenças do Recém-Nascido , Lesão Pulmonar , Células-Tronco Mesenquimais , Recém-Nascido , Animais , Humanos , Recém-Nascido Prematuro , Pulmão , Displasia Broncopulmonar/terapia , Doenças do Recém-Nascido/terapia
6.
Stem Cells Transl Med ; 12(2): 97-111, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724000

RESUMO

Premature birth is a leading cause of childhood morbidity and mortality and often followed by an arrest of postnatal lung development called bronchopulmonary dysplasia. Therapies using exogenous mesenchymal stromal cells (MSC) have proven highly efficacious in term-born rodent models of this disease, but effects of MSC in actual premature-born lungs are largely unknown. Here, we investigated thirteen non-human primates (baboons; Papio spp.) that were born at the limit of viability and given a single, intravenous dose of ten million human umbilical cord tissue-derived MSC per kilogram or placebo immediately after birth. Following two weeks of human-equivalent neonatal intensive care including mechanical ventilation, lung function testing and echocardiographic studies, lung tissues were analyzed using unbiased stereology. We noted that therapy with MSC was feasible, safe and without signs of engraftment when administered as controlled infusion over 15 minutes, but linked to adverse events when given faster. Administration of cells was associated with improved cardiovascular stability, but neither benefited lung structure, nor lung function after two weeks of extrauterine life. We concluded that a single, intravenous administration of MSC had no short- to mid-term lung-protective effects in extremely premature-born baboons, sharply contrasting data from term-born rodent models of arrested postnatal lung development and urging for investigations on the mechanisms of cell-based therapies for diseases of prematurity in actual premature organisms.


Assuntos
Displasia Broncopulmonar , Células-Tronco Mesenquimais , Recém-Nascido , Animais , Humanos , Pulmão , Displasia Broncopulmonar/terapia , Recém-Nascido Prematuro , Primatas
7.
Pediatr Pulmonol ; 58(5): 1492-1500, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751721

RESUMO

INTRODUCTION: Children with a history of bronchopulmonary dysplasia (BPD) may have lower physical activity levels, but evidence to date is mixed. This study compared physical activity levels between children born extremely preterm with and without history of BPD, and examined their associations with pulmonary magnetic resonance imaging (MRI) and pulmonary function test (PFT) indices. METHODS: This multicentre cross-sectional study included children aged 7-9 years born extremely preterm, with and without BPD. Children wore a pedometer for 1 week, then completed the Physical Activity Questionnaire (PAQ), pulmonary MRI, and PFT. Spearman correlations and multivariable linear regression modeling were performed. RESULTS: Of 45 children, 28 had a history of moderate-severe BPD. There were no differences in any physical activity outcomes by BPD status. Higher average daily step count and higher average daily moderate-to-vigorous physical activity (MVPA) were each correlated with greater forced vital capacity (r = 0.41 and 0.58), greater MRI lung proton density at full expiration (r = 0.42 and 0.49), and lower lung clearance index (r = -0.50 and -0.41). After adjusting for MRI total proton density and BPD status, a 5% increase in forced expiratory volume at 1 s was associated with 738 (95% CI: 208, 1268) more steps per day and 0.1 (0.0, 0.2) more hours of MVPA, respectively. CONCLUSION: School-aged children born extremely preterm have similar physical activity levels to their peers, regardless of history of BPD. MRI and PFT measures suggestive of gas trapping and/or airflow obstruction are associated with lower physical activity levels.


Assuntos
Displasia Broncopulmonar , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/diagnóstico por imagem , Lactente Extremamente Prematuro , Estudos Transversais , Prótons , Pulmão/diagnóstico por imagem , Exercício Físico
8.
Eur J Pediatr ; 182(1): 155-163, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36258056

RESUMO

This study aimed to evaluate symptoms of sleep-disordered breathing (SDB) among children born extremely preterm, with and without a history of bronchopulmonary dysplasia (BPD), including associations between sleep and respiratory symptoms, physical activity, pulmonary function, and pulmonary magnetic resonance imaging (MRI). This multi-center cross-sectional study enrolled children aged 7-9 years born extremely preterm with and without BPD. Participants completed the Pediatric Sleep Questionnaire (PSQ), the modified Epworth sleepiness scale, a respiratory symptom questionnaire, pedometer measurements, pulmonary function testing, and pulmonary MRI. Spearman's correlations and univariate and multivariable linear regression modelling were performed. Twenty-eight of 45 children included had a history of moderate-to-severe BPD. The prevalence of sleep-related symptoms was low, with the exception of hyperactivity and inattention. There were no differences in mean (SD) scores on sleep questionnaires in children with and without BPD (PSQ: 0.21 (0.13) vs 0.16 (0.14), p = 0.3; modified Epworth: 2.4 (2.4) vs 1.8 (2.8), p = 0.4). Multiple regression analyses examining difference in sleep scores between groups, adjusting for gestational age and intraventricular hemorrhage, found no statistical difference (p > 0.05). Greater daytime sleepiness was moderately correlated with FEV1%-predicted (r = - 0.52); no other moderate-strong associations were identified.  Conclusions: There was no evidence of clinically important differences in sleep symptoms between children with and without BPD, suggesting that sleep symptoms may be related to prematurity-related factors other than a BPD diagnosis, including airflow limitation. Further research is necessary to explore the relationship between sleep symptoms, airway obstruction, and neurobehavioral symptoms among premature-born children.  Trial registration: NCT02921308. Date of registration: October 3, 2016. What is Known: • Presence of bronchopulmonary dysplasia (BPD) may further contribute to the development of SDB, though its impact is not well-studied. • Premature-born children have a greater risk of lung structural and functional differences, including sleep-disordered breathing (SDB). What is New: • There was no difference in sleep symptoms between children with and without BPD, suggesting that sleep symptoms are related to other prematurity-related factors, such as airflow limitation. • Greater daytime sleepiness was correlated with lower FEV1 in our population, which reflects greater airflow limitation.


Assuntos
Displasia Broncopulmonar , Distúrbios do Sono por Sonolência Excessiva , Síndromes da Apneia do Sono , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/epidemiologia , Lactente Extremamente Prematuro , Estudos Transversais , Pulmão/diagnóstico por imagem , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/epidemiologia
9.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L76-L87, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472344

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common lung disease of extreme prematurity, yet mechanisms that associate with or identify neonates with increased susceptibility for BPD are largely unknown. Combining artificial intelligence with gene expression data is a novel approach that may assist in better understanding mechanisms underpinning chronic lung disease and in stratifying patients at greater risk for BPD. The objective of this study is to develop an early peripheral blood transcriptomic signature that can predict preterm neonates at risk for developing BPD. Secondary analysis of whole blood microarray data from 97 very low birth weight neonates on day of life 5 was performed. BPD was defined as positive pressure ventilation or oxygen requirement at 28 days of age. Participants were randomly assigned to a training (70%) and testing cohort (30%). Four gene-centric machine learning models were built, and their discriminatory abilities were compared with gestational age or birth weight. This study adheres to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement. Neonates with BPD (n = 62 subjects) exhibited a lower median gestational age (26.0 wk vs. 30.0 wk, P < 0.01) and birth weight (800 g vs. 1,280 g, P < 0.01) compared with non-BPD neonates. From an initial pool (33,252 genes/patient), 4,523 genes exhibited a false discovery rate (FDR) <1%. The area under the receiver operating characteristic curve (AUC) for predicting BPD utilizing gestational age or birth weight was 87.8% and 87.2%, respectively. The machine learning models, using a combination of five genes, revealed AUCs ranging between 85.8% and 96.1%. Pathways integral to T cell development and differentiation were associated with BPD. A derived five-gene whole blood signature can accurately predict BPD in the first week of life.


Assuntos
Displasia Broncopulmonar , Recém-Nascido , Humanos , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/genética , Peso ao Nascer , Transcriptoma/genética , Inteligência Artificial , Recém-Nascido Prematuro , Idade Gestacional
10.
Pediatr Res ; 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550351

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth. Up to 1/3 of children with BPD develop pulmonary hypertension (PH). PH increases mortality, the risk of adverse neurodevelopmental outcome and lacks effective treatment. Current vasodilator therapies address symptoms, but not the underlying arrested vascular development. Recent insights into placental biology and novel technological advances enabling the study of normal and impaired lung development at the single cell level support the concept of a vascular phenotype of BPD. Dysregulation of growth factor pathways results in depletion and dysfunction of putative distal pulmonary endothelial progenitor cells including Cap1, Cap2, and endothelial colony-forming cells (ECFCs), a subset of vascular progenitor cells with self-renewal and de novo angiogenic capacity. Preclinical data demonstrate effectiveness of ECFCs and ECFC-derived particles including extracellular vesicles (EVs) in promoting lung vascular growth and reversing PH, but the mechanism is unknown. The lack of engraftment suggests a paracrine mode of action mediated by EVs that contain miRNA. Aberrant miRNA signaling contributes to arrested pulmonary vascular development, hence using EV- and miRNA-based therapies is a promising strategy to prevent the development of BPD-PH. More needs to be learned about disrupted pathways, timing of intervention, and mode of delivery. IMPACT: Single-cell RNA sequencing studies provide new in-depth view of developmental endothelial depletion underlying BPD-PH. Aberrant miRNA expression is a major cause of arrested pulmonary development. EV- and miRNA-based therapies are very promising therapeutic strategies to improve prognosis in BPD-PH.

11.
Front Pharmacol ; 13: 988974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313352

RESUMO

The 21st Century Cures Act requires FDA to expand its use of real-world evidence (RWE) to support approval of previously approved drugs for new disease indications and post-marketing study requirements. To address this need in neonates, the FDA and the Critical Path Institute (C-Path) established the International Neonatal Consortium (INC) to advance regulatory science and expedite neonatal drug development. FDA recently provided funding for INC to generate RWE to support regulatory decision making in neonatal drug development. One study is focused on developing a validated definition of bronchopulmonary dysplasia (BPD) in neonates. BPD is difficult to diagnose with diverse disease trajectories and few viable treatment options. Despite intense research efforts, limited understanding of the underlying disease pathobiology and disease projection continues in the context of a computable phenotype. It will be important to determine if: 1) a large, multisource aggregation of real-world data (RWD) will allow identification of validated risk factors and surrogate endpoints for BPD, and 2) the inclusion of these simulations will identify risk factors and surrogate endpoints for studies to prevent or treat BPD and its related long-term complications. The overall goal is to develop qualified, fit-for-purpose disease progression models which facilitate credible trial simulations while quantitatively capturing mechanistic relationships relevant for disease progression and the development of future treatments. The extent to which neonatal RWD can inform these models is unknown and its appropriateness cannot be guaranteed. A component of this approach is the critical evaluation of the various RWD sources for context-of use (COU)-driven models. The present manuscript defines a landscape of the data including targeted literature searches and solicitation of neonatal RWD sources from international stakeholders; analysis plans to develop a family of models of BPD in neonates, leveraging previous clinical trial experience and real-world patient data is also described.

12.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136598

RESUMO

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Assuntos
Displasia Broncopulmonar , Disfunção Cognitiva , Hiperóxia , Nascimento Prematuro , Recém-Nascido , Feminino , Camundongos , Humanos , Animais , Hiperóxia/complicações , Hiperóxia/metabolismo , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Neurogênese , Disfunção Cognitiva/etiologia , Cognição , Pulmão/metabolismo
13.
Stem Cells Transl Med ; 11(1): 44-54, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641170

RESUMO

Mesenchymal stromal cells (MSCs) are widely used in preclinical and clinical research. Despite minimal criteria to define MSCs provided by the International Society for Cell and Gene Therapy (ISCT), concerns have been raised about inconsistent descriptions of cell products used. To address the question "How are MSCs currently defined and characterized?" we conducted a scoping review on original MSC preclinical and clinical studies published over a 3-month period. Selected studies identified from a systematic search of MEDLINE and Embase were categorized as follows: Clinical, Animal, Biology, or Biomaterial studies. Data were extracted from a randomly selected subsample of studies. We extracted information, including epidemiological characteristics of studies, study design, ISCT criteria, and MSC characterization and culture condition. A total of 1053 articles were included and among them, 318 articles were analyzed. Overall, 18% of the articles explicitly referred to the ISCT minimal criteria for MSC. MSC characteristics and culture conditions were inconstantly reported (eg, viability assay reported in only 18% of the articles). Only 20% of documents reported at least 1 functional assay. Clinical studies showed inconsistent completeness in reporting relevant information on the MSC characterization and cell manufacturing processes. These results suggest that further development and implementation of a consensus definition of MSCs and reporting guidelines are needed to enhance rigor, reproducibility, and transparency in MSC research.


Assuntos
Células-Tronco Mesenquimais , Animais , Materiais Biocompatíveis , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Reprodutibilidade dos Testes
14.
Stem Cells ; 40(5): 479-492, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35445270

RESUMO

Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Células-Tronco Mesenquimais , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/terapia , Células Endoteliais , Humanos , Hiperóxia/genética , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Sequência de RNA
15.
Cells ; 11(7)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406742

RESUMO

Extreme preterm birth disrupts late lung development and puts newborns at risk of developing chronic lung disease, known as bronchopulmonary dysplasia (BPD). BPD can be associated with life-long complications, and currently no effective treatment is available. Cell therapies are entering the clinics to curb complications of extreme preterm birth with several clinical trials testing the feasibility, safety and efficacy of mesenchymal stromal cells (MSCs). The therapeutic effect of MSCs is contained in their secretome, and nanosized membranous structures released by the MSCs, known as extracellular vesicles (EVs), have been shown to be the therapeutic vectors. Driven by this discovery, the efficacy of EV-based therapy is currently being explored in models of BPD. EVs derived from MSCs, contain a rich cargo of anti-inflammatory and pro-angiogenic molecules, making them suitable candidates to treat multifactorial diseases such as BPD. Here, we review the state-of-the-art of preclinical studies involving MSC-derived EVs in models of BPD and highlight technical and regulatory challenges that need to be addressed before clinical translation. In addition, we aim at increasing awareness regarding the importance of rigorous reporting of experimental details of EV experiments and to increase the outreach of the current established guidelines amongst researchers in the BPD field.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Doenças do Recém-Nascido , Células-Tronco Mesenquimais , Nascimento Prematuro , Displasia Broncopulmonar/terapia , Humanos , Recém-Nascido , Pulmão
16.
Am J Respir Crit Care Med ; 205(10): 1186-1201, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35286238

RESUMO

Rationale: Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials, mesenchymal stromal cell therapies demonstrate promise as a therapeutic alternative for bronchopulmonary dysplasia. Objectives: To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. Methods: Mice at Postnatal Day 7 or 8 were injected intraperitoneally with LPS and ventilated with 40% oxygen at Postnatal Day 9 or 10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone and hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. Measurements and Main Results: The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. In addition, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. Conclusions: Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nascimento Prematuro , Animais , Displasia Broncopulmonar/terapia , Feminino , Humanos , Recém-Nascido , Pulmão , Lesão Pulmonar/terapia , Camundongos , Gravidez
18.
Ann Am Thorac Soc ; 19(7): 1149-1157, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35030070

RESUMO

Rationale: Children born prematurely, particularly those with bronchopulmonary dysplasia, have persisting lung abnormalities requiring longitudinal monitoring. Pulmonary ultrashort echo time magnetic resonance imaging (MRI) measurements may provide sensitive markers of persisting lung abnormalities and have not been evaluated in school-aged children born prematurely. Objectives: To compare pulmonary MRI and pulmonary function test measurements in preterm-born school-aged children with and without bronchopulmonary dysplasia. Methods: Children aged 7-9 years, born extremely preterm, with and without bronchopulmonary dysplasia, were recruited from three centers. Participants underwent pulmonary ultrashort echo time MRI and pulmonary function tests. Primary outcomes included total proton density and proton density at full expiration, measured using MRI. Multiple linear regression analysis was performed, adjusting for gestational age and bronchopulmonary dysplasia. Associations between MRI and pulmonary function were tested. Results: Thirty-five children were included in the primary analysis (24 with bronchopulmonary dysplasia, 11 without); 29 completed pulmonary function tests, of whom 11 (38%) had airflow limitation. Children with bronchopulmonary dysplasia had 44% (95% confidence interval [CI], 10-66%) lower mean total proton density (mean ± standard deviation, 3.6 ± 2.6) than those without (6.1 ± 4.0). Those with bronchopulmonary dysplasia had 25% (95% CI, 3-42%) lower proton density at full expiration than those without. Lower total proton density and proton density at full expiration were moderately correlated with greater residual volume, residual volume/total lung capacity, and lung clearance index (Spearman correlations for total proton density: -0.42, -0.57, and -0.53, respectively. Spearman correlations for proton density at full expiration: -0.28, -0.57, and -0.45, respectively). Conclusions: School-aged preterm-born children with bronchopulmonary dysplasia have parenchymal tissue abnormalities measured using ultrashort MRI proton density, compared with those without. MRI proton density correlated with pulmonary function measures indicative of gas trapping. Clinical trial registered with www.clinicaltrials.gov (NCT02921308).


Assuntos
Displasia Broncopulmonar , Pulmão , Displasia Broncopulmonar/diagnóstico por imagem , Criança , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Prótons , Testes de Função Respiratória
19.
Data Brief ; 40: 107736, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005134

RESUMO

The Ductus Arteriosus (DA) is a fetal vessel that connects the aorta to the pulmonary artery ensuring that placental oxygenated blood is diverted from the lungs to the systemic circulation. Following exposure to oxygen (O2), in the first few days of life, the DA responds with a functional closure that is followed by anatomical closure. Here, we study human DA smooth muscle cells (DASMC) taken from 10 term infants during congenital heart surgery. Purification of these cells using flow cytometry ensured a pure population of DASMCs, which we confirmed as responsive to O2. An oxygen-induced increase in intracellular calcium of 18.1%±4.4% and SMC constriction (-27%±1.5% shortening) occurred in all cell lines within five minutes. These cells were maintained in either hypoxia (2.5% O2), mimicking in utero conditions or in normoxia (19% O2) mimicking neonate conditions. We then used 3' RNAsequencing to identify the transcriptome of DASMCs in each condition [1]. In this paper, we present the full differentially regulated gene list from this experiment.

20.
Semin Fetal Neonatal Med ; 27(1): 101243, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33962890

RESUMO

Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.


Assuntos
Displasia Broncopulmonar , Displasia Broncopulmonar/etiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pulmão , Alvéolos Pulmonares/fisiologia , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA