Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38626769

RESUMO

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Diferenciação Celular , Células Dendríticas , Neoplasias Pulmonares , Linfócitos T , Vacinação , Humanos , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Diferenciação Celular/imunologia , Idoso , Linfócitos T/imunologia
2.
Nat Commun ; 13(1): 6075, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241641

RESUMO

Listeria monocytogenes is a foodborne intracellular bacterial pathogen leading to human listeriosis. Despite a high mortality rate and increasing antibiotic resistance no clinically approved vaccine against Listeria is available. Attenuated Listeria strains offer protection and are tested as antitumor vaccine vectors, but would benefit from a better knowledge on immunodominant vector antigens. To identify novel antigens, we screen for Listeria peptides presented on the surface of infected human cell lines by mass spectrometry-based immunopeptidomics. In between more than 15,000 human self-peptides, we detect 68 Listeria immunopeptides from 42 different bacterial proteins, including several known antigens. Peptides presented on different cell lines are often derived from the same bacterial surface proteins, classifying these antigens as potential vaccine candidates. Encoding these highly presented antigens in lipid nanoparticle mRNA vaccine formulations results in specific CD8+ T-cell responses and induces protection in vaccination challenge experiments in mice. Our results can serve as a starting point for the development of a clinical mRNA vaccine against Listeria and aid to improve attenuated Listeria vaccines and vectors, demonstrating the power of immunopeptidomics for next-generation bacterial vaccine development.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Linfócitos T CD8-Positivos , Humanos , Epitopos Imunodominantes , Lipossomos , Listeria/genética , Listeria monocytogenes/genética , Listeriose/prevenção & controle , Proteínas de Membrana , Camundongos , Nanopartículas , Vacinas Atenuadas , Vacinas Sintéticas/genética , Vacinas de mRNA
3.
FEBS J ; 289(13): 3826-3838, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35066984

RESUMO

RNA viruses in the Picornaviridae family express a large 250 kDa viral polyprotein that is processed by virus-encoded proteinases into mature functional proteins with specific functions for virus replication. One of these proteins is the highly conserved enteroviral transmembrane protein 3A that assists in reorganizing cellular membranes associated with the Golgi apparatus. Here, we studied the molecular properties of the Coxsackievirus B3 (CVB3) protein 3A with regard to its dimerization and its functional stability. By applying mutational analysis and biochemical characterization, we demonstrate that protein 3A forms DTT-sensitive disulfide-linked dimers via a conserved cytosolic cysteine residue at position 38 (Cys38). Homodimerization of CVB3 protein 3A via Cys38 leads to profound stabilization of the protein, whereas a C38A mutation promotes a rapid proteasome-dependent elimination of its monomeric form. The lysosomotropic agent chloroquine (CQ) exerted only minor stabilizing effects on the 3A monomer but resulted in enrichment of the homodimer. Our experimental data demonstrate that disulfide linkages via a highly conserved Cys-residue in enteroviral protein 3A have an important role in the dimerization of this viral protein, thereby preserving its stability and functional integrity.


Assuntos
Dissulfetos , Enterovirus Humano B , Dimerização , Dissulfetos/metabolismo , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Células HeLa , Humanos , Proteínas Virais/metabolismo , Replicação Viral
4.
Front Cell Infect Microbiol ; 11: 735416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804992

RESUMO

RNF213 is a large, poorly characterized interferon-induced protein. Mutations in RNF213 are associated with predisposition for Moyamoya disease (MMD), a rare cerebrovascular disorder. Recently, RNF213 was found to have broad antimicrobial activity in vitro and in vivo, yet the molecular mechanisms behind this function remain unclear. Using mass spectrometry-based proteomics and validation by real-time PCR we report here that knockdown of RNF213 leads to transcriptional upregulation of MVP and downregulation of CYR61, in line with reported pro- and anti-bacterial activities of these proteins. Knockdown of RNF213 also results in downregulation of DDAH1, which we discover to exert antimicrobial activity against Listeria monocytogenes infection. DDAH1 regulates production of nitric oxide (NO), a molecule with both vascular and antimicrobial effects. We show that NO production is reduced in macrophages from RNF213 KO mice, suggesting that RNF213 controls Listeria infection through regulation of DDAH1 transcription and production of NO. Our findings propose a potential mechanism for the antilisterial activity of RNF213 and highlight NO as a potential link between RNF213-mediated immune responses and the development of MMD.


Assuntos
Doença de Moyamoya , Óxido Nítrico , Adenosina Trifosfatases/genética , Animais , Predisposição Genética para Doença , Camundongos , Proteoma , Ubiquitina-Proteína Ligases/genética
5.
Nat Commun ; 12(1): 5772, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599178

RESUMO

ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We report that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We show that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1, human respiratory syncytial virus and coxsackievirus B3, and we observe a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.


Assuntos
Adenosina Trifosfatases/metabolismo , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Células A549 , Animais , Enterovirus/fisiologia , Células HEK293 , Células HeLa , Herpesvirus Humano 1/fisiologia , Humanos , Interferon Tipo I/metabolismo , Gotículas Lipídicas/metabolismo , Listeria monocytogenes/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , Multimerização Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Células THP-1 , Ubiquitina/metabolismo
6.
Nat Immunol ; 22(11): 1416-1427, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663977

RESUMO

Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.


Assuntos
COVID-19/imunologia , Citocinas/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , SARS-CoV-2/fisiologia , Ubiquitinas/metabolismo , Diferenciação Celular , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Citocinas/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Evasão da Resposta Imune , Imunidade Inata , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Células-Tronco Pluripotentes/citologia , Ubiquitinação , Ubiquitinas/genética , Zika virus/fisiologia , Infecção por Zika virus/imunologia
7.
J Clin Invest ; 128(8): 3265-3279, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746256

RESUMO

TNF is an important mediator in numerous inflammatory diseases, e.g., in inflammatory bowel diseases (IBDs). In IBD, acute increases in TNF production can lead to disease flares. Glucocorticoids (GCs), which are steroids that bind and activate the glucocorticoid receptor (GR), are able to protect animals and humans against acute TNF-induced inflammatory symptoms. Mice with a poor transcriptional response of GR dimer-dependent target genes were studied in a model of TNF-induced lethal inflammation. In contrast to the GRWT/WT mice, these GRdim/dim mice displayed a substantial increase in TNF sensitivity and a lack of protection by the GC dexamethasone (DEX). Unchallenged GRdim/dim mice had a strong IFN-stimulated gene (ISG) signature, along with STAT1 upregulation and phosphorylation. This ISG signature was gut specific and, based on our studies with antibiotics, depended on the gut microbiota. GR dimers directly bound to short DNA sequences in the STAT1 promoter known as inverted repeat negative GRE (IR-nGRE) elements. Poor control of STAT1 in GRdim/dim mice led to failure to repress ISG genes, resulting in excessive necroptosis induction by TNF. Our findings support a critical interplay among gut microbiota, IFNs, necroptosis, and GR in both the basal response to acute inflammatory challenges and pharmacological intervention by GCs.


Assuntos
Dexametasona/farmacologia , Doenças Inflamatórias Intestinais/metabolismo , Multimerização Proteica/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , Multimerização Proteica/genética , Receptores de Glucocorticoides/genética , Elementos de Resposta , Fator de Transcrição STAT1/genética , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA