Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 21(1): 38-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24434573

RESUMO

Myeloid-derived suppressor cells (MDSCs) accumulate in the glioma microenvironment during tumor progression and promote immunosuppression. Interleukin-12 (IL-12) immunogene therapy can alter MDSCs toward an antigen-presenting cell phenotype and these mature cells can have a central role in antigen presentation. It remains unclear, however, how MDSC depletion can affect glioma immunotherapy. In this study, we generated a replication-deficient adenoviral vector, Ad.5/3.cRGD-mIL12p70, that transduces the GL261-based murine glioma cell line, resulting in the induction of biologically active, murine IL12p70 expression. Ex vivo, IL-12 expressed by GL261 cells induced interferon-γ synthesis in CD8(+) T cells (P<0.001), CD4(+) T cells (P=0.009) and natural killer cells (P=0.036). When injected 1 week after tumor implantation, Ad.5/3.cRGD-mIL12p70 successfully prolonged the survival of glioma-bearing mice. Sixty percent of animals treated with IL-12 immunotherapy were long-term survivors over 175 days, whereas all the control group animals expired by 40 days after tumor implantation (P=0.026). Mice receiving Ad.5/3.cRGD-mIL12p70 also accumulated 50% less MDSCs in the brain than the control group (P=0.007). Moreover, in the IL-12 group, MDSCs significantly overexpressed CD80 and major histocompatibility complex class II molecules (P=0.041). Depletion of MDSCs with Gr1(+) antibody had no survival benefit induced by IL-12-mediated immunotherapy. Of note, IL-12 therapy increased the presence of myeloid dendritic cells (mDCs) in the glioma microenvironment (P=0.0069). Ultimately, the data show that in the context of IL-12 immunogene therapy, MDSCs are dispensable and mDCs may provide the majority of antigen presentation in the brain.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Glioma/genética , Glioma/imunologia , Interleucina-12/genética , Células Mieloides/imunologia , Adenoviridae/genética , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glioma/mortalidade , Glioma/terapia , Imunoterapia , Interleucina-12/biossíntese , Masculino , Camundongos
2.
Curr Mol Med ; 13(4): 535-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22934848

RESUMO

Glioblastoma multiforme (GBM), the most common and aggressive form of primary brain tumor, presents a dismal prognosis. Current standard therapies are only able to improve patient survival by a few months. The search for alternative approaches in glioblastoma treatment, together with the recent discovery of a new class of small RNA molecules that are capable of regulating gene expression, prompted a race for a deeper and thorough understanding of how these molecules work. Today, it is known that microRNAs are involved in many cellular processes that are altered in GBM tumors, such as angiogenesis, invasion, cell proliferation and apoptosis. Research in this area is now gathering efforts to translate these findings into clinically relevant therapies that could improve the diagnosis and outcome of GBM patients. In this review, we discuss the use of microRNAs as potential diagnostic, prognostic and therapeutic tools against glioblastoma. We will also assess the current challenges and future perspectives of microRNA-based therapies, with a special focus on why this promising therapeutic approach is not yet in the clinic and how to overcome this limitation.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , MicroRNAs/genética , Genes Supressores de Tumor , Humanos , MicroRNAs/metabolismo , Prognóstico , Transdução de Sinais
3.
Gene Ther ; 20(3): 318-27, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22673390

RESUMO

Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) have an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that upregulation of MMP activity during anti-angiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*P=0.03) and collagen IV content decreases (*P=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho=-0.38; **P=0.003), we show that VEGF-blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***P<0.0001). Our data propose a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy.


Assuntos
Adenoviridae/fisiologia , Inibidores da Angiogênese/farmacologia , Colágeno/metabolismo , Glioma/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glioma/genética , Glioma/patologia , Humanos , Proteínas Inibidoras de Apoptose/genética , Injeções Intralesionais , Estimativa de Kaplan-Meier , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Terapia Viral Oncolítica/métodos , Polilisina/genética , Polilisina/metabolismo , Regiões Promotoras Genéticas/genética , Proteólise , Survivina , Fator A de Crescimento do Endotélio Vascular/imunologia , Replicação Viral/efeitos dos fármacos
4.
Cancer Gene Ther ; 19(6): 431-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22555507

RESUMO

Oncolytic virotherapy is a promising novel therapy for glioblastoma that needs to be optimized before introduced to clinic. The targeting of conditionally replicating adenoviruses (CRAds) can be improved by relying on the tumor-tropic properties of neural stem cells (NSCs). Here, we report the characterization of an FDA approved NSC, HB1.F3-CD, as a cell carrier for CRAd-S-pk7, a glioma-tropic oncolytic adenovirus. We show that NSCs replicate and release infectious CRAd-S-pk7 progeny capable of lysing glioma cell lines. Moreover, ex-vivo-loaded NSCs, injected intracranially in nude mice bearing human glioma xenografts (i) retained their tumor tropism, (ii) continued to replicate CRAd-S-pk7 for more than a week after reaching the tumor site and (iii) successfully handed off CRAd-S-pk7 to glioma cells in vivo. Delivery via carrier cells reduced non-specific adenovirus distribution in the mouse brain. Moreover, we assessed biodistribution of loaded NSCs after intracranial injection in animal models semi-permissive to adenovirus replication, the Syrian hamster and cotton rat. NSCs did not migrate to distant organs and high levels of CRAd-S-pk7 DNA were observed only in the injected hemisphere. In conclusion, this optimized carrier system, with high efficiency of adenovirus delivery and minimal systemic toxicity, poses considerable advantages for anti-glioma oncolytic virotherapy.


Assuntos
Adenoviridae/fisiologia , Neoplasias Encefálicas/terapia , Glioma/terapia , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Adenoviridae/genética , Proteínas E1A de Adenovirus/biossíntese , Proteínas E1A de Adenovirus/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Sobrevivência Celular , Cricetinae , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/biossíntese , Humanos , Luciferases de Vaga-Lume/biossíntese , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Vírus Oncolíticos/genética , Organismos Geneticamente Modificados , Proteínas Recombinantes/biossíntese , Sigmodontinae , Carga Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA