Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444489

RESUMO

External and internal mechanical forces modulate cell morphology, movement, proliferation and metabolism, and represent crucial inputs for tissue homeostasis. The transcriptional regulators YAP and TAZ are important effectors of mechanical signaling and are frequently activated in solid tumors, correlating with metastasis, chemoresistance, and shorter patient survival. YAP/TAZ activity is controlled by various pathways that sense cell shape, polarity, contacts, and mechanical tension. In tumors, aberrant YAP/TAZ activation may result from cancer-related alterations of such regulatory networks. The tumor suppressor DAB2IP is a Ras-GAP and scaffold protein that negatively modulates multiple oncogenic pathways and is frequently downregulated or inactivated in solid tumors. Here, we provide evidence that DAB2IP expression is sustained by cell confluency. We also find that DAB2IP depletion in confluent cells alters their morphology, reducing cell packing while increasing cell stiffness. Finally, we find that DAB2IP depletion in confluent cells favors YAP/TAZ nuclear localization and transcriptional activity, while its ectopic expression in subconfluent cells increases YAP/TAZ retention in the cytoplasm. Together, these data suggest that DAB2IP may function as a sensor of cell interactions, contributing to dampening cellular responses to oncogenic inputs in confluent cells and that DAB2IP loss-of-function would facilitate YAP/TAZ activation in intact epithelia, accelerating oncogenic transformation.

2.
Mol Brain ; 14(1): 159, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696792

RESUMO

Neuroinflammation is an escalation factor shared by a vast range of central nervous system (CNS) pathologies, from neurodegenerative diseases to neuropsychiatric disorders. CNS immune status emerges by the integration of the responses of resident and not resident cells, leading to alterations in neural circuits functions. To explore spinal cord astrocyte reactivity to inflammatory threats we focused our study on the effects of local inflammation in a controlled micro-environment, the organotypic spinal slices, developed from the spinal cord of mouse embryos. These organ cultures represent a complex in vitro model where sensory-motor cytoarchitecture, synaptic properties and spinal cord resident cells, are retained in a 3D fashion and we recently exploit these cultures to model two diverse immune conditions in the CNS, involving different inflammatory networks and products. Here, we specifically focus on the tuning of calcium signaling in astrocytes by these diverse types of inflammation and we investigate the mechanisms which modulate intracellular calcium release and its spreading among astrocytes in the inflamed environment. Organotypic spinal cord slices are cultured for two or three weeks in vitro (WIV) and exposed for 6 h to a cocktail of cytokines (CKs), composed by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1 ß) and granulocyte macrophage-colony stimulating factor (GM-CSF), or to lipopolysaccharide (LPS). By live calcium imaging of the ventral horn, we document an increase in active astrocytes and in the occurrence of spontaneous calcium oscillations displayed by these cells when exposed to each inflammatory threat. Through several pharmacological treatments, we demonstrate that intracellular calcium sources and the activation of connexin 43 (Cx43) hemichannels have a pivotal role in increasing calcium intercellular communication in both CKs and LPS conditions, while the Cx43 gap junction communication is apparently reduced by the inflammatory treatments.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Conexina 43/fisiologia , Doenças Neuroinflamatórias/fisiopatologia , Medula Espinal/fisiopatologia , Animais , Células do Corno Anterior/fisiologia , Citocinas/toxicidade , Vetores Genéticos/farmacologia , Técnicas In Vitro , Microscopia Intravital , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Doenças Neuroinflamatórias/induzido quimicamente , Medula Espinal/embriologia
3.
Eur J Neurosci ; 53(12): 3831-3850, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32531845

RESUMO

Integrins are extracellular matrix receptors that mediate biochemical and mechanical bi-directional signals between the extracellular and intracellular environment of a cell thanks to allosteric conformational changes. In the brain, they are found in both neurons and glial cells, where they play essential roles in several aspects of brain development and function, such as cell migration, axon guidance, synaptogenesis, synaptic plasticity and neuro-inflammation. Although there are many successful examples of how regulating integrin adhesion and signaling can be used for therapeutic purposes, for example for halting tumor progression, this is not the case for the brain, where the growing evidence of the importance of integrins for brain pathophysiology has not translated yet into medical applications. Here, we review recent literature showing how alterations in integrin structure, expression and signaling may be involved in the etiology of autism spectrum disorder, epilepsy, schizophrenia, addiction, depression and Alzheimer's disease. We focus on common mechanisms and recurrent signaling pathways, trying to bridge studies on the genetics and molecular structure of integrins with those on synaptic physiology and brain pathology. Further, we discuss integrin-targeting strategies and their potential benefits for therapeutic purposes in neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Integrinas , Encéfalo/metabolismo , Humanos , Integrinas/metabolismo , Estrutura Molecular , Neurônios/metabolismo
4.
Neuropharmacology ; 78: 23-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23542441

RESUMO

At synapses, pre- and post-synaptic cells get in direct contact with each other via cell adhesion molecules (CAMs). Several CAMs have been identified at the neuromuscular junction and at central synapses, where they regulate synaptic strength, by recruiting scaffolding proteins, neurotransmitter receptors and synaptic vesicles in response to the binding of counter-receptors across the synaptic cleft. Many synapses are also surrounded by astrocytic processes and embedded in conspicuous extracellular matrix (ECM). It is now widely recognized that astrocytes play a central role in regulating the synaptic machinery by exchanging information with the neuronal elements via diffusible molecules and direct physical interactions; this has lead to the concept of the 'tri-partite synapse'. More recently, the term 'tetra-partite synapse' has been introduced to underlie the importance of ECM in shaping synaptic function by mediating interaction and signaling between neurons and astrocytes. Here, we will review how this integrated view of the synapse can help us understand homeostatic synaptic plasticity at the neuromuscular junction and in the central nervous system. We will explore how synaptic CAMs regulate two forms of homeostatic plasticity: (i) postsynaptic scaling of synaptic currents to counteract changes in neuronal network activity and (ii) the compensatory modulation of presynaptic neurotransmitter release in response to changes in postsynaptic efficacy. We will discuss recent findings on activity-dependent trans-synaptic signaling events and the role of cell adhesion in the feedback control of network activity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.


Assuntos
Adesão Celular/fisiologia , Plasticidade Neuronal , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Homeostase , Humanos , Transdução de Sinais/fisiologia
5.
Mol Cell Proteomics ; 11(8): 215-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22645316

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.


Assuntos
Acetilglucosamina/metabolismo , Peptídeos/análise , Sinapses/metabolismo , Sinaptossomos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cromatografia de Fase Reversa , Glicosilação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/genética , Peptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/metabolismo , Proteômica/métodos , Membranas Sinápticas/metabolismo
6.
Proc Natl Acad Sci U S A ; 106(22): 8894-9, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458039

RESUMO

Protein O-GlcNAcylation occurs in all animals and plants and is implicated in modulation of a wide range of cytosolic and nuclear protein functions, including gene silencing, nutrient and stress sensing, phosphorylation signaling, and diseases such as diabetes and Alzheimer's. The limiting factor impeding rapid progress in deciphering the biological functions of protein O-GlcNAcylation has been the inability to easily identify exact residues of modification. We describe a robust, high-sensitivity strategy able to assign O-GlcNAcylation sites of native modified peptides using electron transfer dissociation mass spectrometry. We have studied the murine postsynaptic density pseudoorganelle and report the assignment of 58 modification sites from a single experiment--significantly increasing the number of sites known in the literature. Components of several repressor complexes, such as NCoR1, polyhomeotic-like protein3, and EMSY, are modified. In addition, 28 O-GlcNAc sites were found on the protein Bassoon, effectively matching the number of phosphorylation sites reported previously on this protein. This finding suggests that on certain proteins, O-GlcNAcylation may be as extensive and important as phosphorylation in regulating protein function. Three of the newly discovered O-GlcNAc sites on Bassoon have previously been reported as phosphorylation sites, highlighting the interplay of the modifications. Surprisingly, several peptides with GlcNAc modifications on asparagines within the N-X-S/T consensus sequence were also observed from membrane protein extracellular domains. This powerful strategy fulfills a long-standing need in the biological community by facilitating modification site identifications that will accelerate understanding of the biological significance of this elusive regulatory posttranslational modification.


Assuntos
Acetilglucosamina/química , Proteínas do Tecido Nervoso/química , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Acilação , Sequência de Aminoácidos , Animais , Sequência Consenso , Transporte de Elétrons , Espectrometria de Massas/métodos , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Peptídeos , Fosforilação
7.
Neuron ; 58(5): 749-62, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18549786

RESUMO

At synapses, cell adhesion molecules (CAMs) provide the molecular framework for coordinating signaling events across the synaptic cleft. Among synaptic CAMs, the integrins, receptors for extracellular matrix proteins and counterreceptors on adjacent cells, are implicated in synapse maturation and plasticity and memory formation. However, little is known about the molecular mechanisms of integrin action at central synapses. Here, we report that postsynaptic beta3 integrins control synaptic strength by regulating AMPA receptors (AMPARs) in a subunit-specific manner. Pharmacological perturbation targeting beta3 integrins promotes endocytosis of GluR2-containing AMPARs via Rap1 signaling, and expression of beta3 integrins produces robust changes in the abundance and composition of synaptic AMPARs without affecting dendritic spine structure. Importantly, homeostatic synaptic scaling induced by activity deprivation elevates surface expression of beta3 integrins, and in turn, beta3 integrins are required for synaptic scaling. Our findings demonstrate a key role for integrins in the feedback regulation of excitatory synaptic strength.


Assuntos
Integrina beta3/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Endocitose/efeitos dos fármacos , Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Técnicas In Vitro , Integrina beta3/genética , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios , Técnicas de Patch-Clamp/métodos , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Sinapses/efeitos dos fármacos , Tiazolidinas/farmacologia , Fatores de Tempo , Transfecção , Proteínas rap1 de Ligação ao GTP
8.
Mol Cell Proteomics ; 5(5): 923-34, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16452088

RESUMO

O-GlcNAc is a widespread dynamic carbohydrate modification of cytosolic and nuclear proteins with features analogous to phosphorylation. O-GlcNAc acts critically in many cellular processes, including signal transduction, protein degradation, and regulation of gene expression. However, the study of its specific regulatory functions has been limited by difficulties in mapping sites of O-GlcNAc modification. We report methods for direct enrichment and identification of in vivo O-GlcNAc-modified peptides through lectin weak affinity chromatography (LWAC) and mass spectrometry. The effectiveness of this strategy on complex peptide mixtures was demonstrated through enrichment of 145 unique O-GlcNAc-modified peptides from a postsynaptic density preparation. 65 of these O-GlcNAc-modified peptides were sequenced and belonged to proteins with diverse functions in synaptic transmission. Beta-elimination/Michael addition, MS(3) on O-GlcNAc neutral loss ions, and electron capture dissociation were shown to facilitate analysis of O-GlcNAc-modified peptides/sites from lectin weak affinity chromatography enriched postsynaptic density samples. Bassoon and Piccolo, proteins critical to synapse assembly and vesicle docking, were extensively modified by O-GlcNAc. In some cases, O-GlcNAc was mapped to peptides previously identified as phosphorylated, indicating potential interplay between these modifications. Shared substrate amino acid context was apparent in subsets of O-GlcNAc-modified peptides, including "PVST" and a novel "TTA" motif (two hydroxyl-containing amino acids adjacent to an alanine). The results suggest specific roles for O-GlcNAc modification in synaptic transmission, establish a basis for site-specific regulatory studies, and provide methods that will facilitate O-GlcNAc proteome analysis across a wide variety of cells and tissues.


Assuntos
Acetilglucosamina/química , Cromatografia de Afinidade/métodos , Lectinas/química , Proteômica/métodos , Sinapses/química , Sequência de Aminoácidos , Animais , Bovinos , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA