Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137309, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574575

RESUMO

While Azorubin S (AZRS) is extensively used as a reddish anionic azo dye for textiles and an alimentary colorant in food, AZRS is mutagenic/carcinogenic, and it shall be removed from dye-containing wastewaters. In view of advantages of SO4•--related chemical oxidation technology, oxone (KHSO5) would an ideal source of SO4•- for degrading AZRS, and heterogeneous Co3O4-based catalysts is required and shall be developed for activating oxone. Herein, a facile protocol is proposed for fabricating mesoporous silica (MS)-confined Co3O4 by a templating agent-mediated dry-grinding procedure. As the templating agent retained inside the ordered pores of MS (before calcination) would facilitate insertion and dispersion of Co ions into pores, the resulting Co3O4 nanoparticles (NPs) would be grown and confined within the pores of MS after calcination, affording Co@MS. On the contrary, another analogue, Co/MS, is also prepared using the similar protocol without the templating agent-mediated introduction of Co, but Co3O4 NPs seriously aggregate as clusters on MS. Therefore, Co@MS outperforms Co/MS for activating oxone to eliminate AZRS. Co@MS shows a noticeably lower activation energy of AZRS elimination than the existing catalysts, revealing its advantage over the reported catalysts. Moreover, the mechanistic investigation of AZRS elimination by Co@MS-activated oxone has been also elucidated for identifying the presence of SO4•‒, •OH, and 1O2 in AZRS degradation using scavengers, electron paramagnetic resonance spectroscopy, and semi-quantification. The AZRS decomposition pathway is also investigated and unveiled in details via the DFT calculation. These results validate that Co@MS appears as a superior catalyst of oxone activation for AZRS degradation.


Assuntos
Dióxido de Silício , Água , Água/química , Compostos Azo , Cobalto/química
2.
Sci Total Environ ; 846: 157310, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839874

RESUMO

Monitoring the actual change in consumption of nicotine (a proxy for smoking) in the population is essential for formulating tobacco control policies. In recent years, wastewater-based epidemiology (WBE) has been applied as an alternative method to estimate changes in consumption of tobacco and other substances in different communities around the world, with high potential to be used in resource-scarce settings. This study aimed to conduct a WBE analysis in Hanoi, Vietnam, a lower-middle-income-country setting known for high smoking prevalence. Wastewater samples were collected at two sites along a sewage canal in Hanoi during three periods: Period 1 (September 2018), Period 2 (December 2018-January 2019), and Period 3 (December 2019-January 2020). Concentrations of cotinine, 3-hydroxycotinine, and nicotine ranged from 0.73 µg/L to 3.83 µg/L, from 1.09 µg/L to 5.07 µg/L, and from 0.97 µg/L to 9.90 µg/L, respectively. The average mass load of cotinine estimated for our samples was 0.45 ± 0.09 mg/day/person, which corresponds to an estimated daily nicotine consumption of 1.28 ± 0.25 mg/day/person. No weekly trend was detected over the three monitoring periods. We found the amount of nicotine consumption in Period 1 to be significantly lower than in Period 2 and Period 3. Our WBE estimates of smoking prevalence were slightly lower than the survey data. The analysis of benchmarking biomarkers confirmed that cotinine was stable in the samples similar to acesulfame, while paracetamol degraded along the sewer canal. Further refinement of the WBE approach may be required to improve the accuracy of analyzing tobacco consumption in the poor sewage infrastructure setting of Vietnam.


Assuntos
Nicotina , Águas Residuárias , Benchmarking , Biomarcadores/análise , Cotinina/análise , Humanos , Nicotina/análise , Esgotos , Águas Residuárias/análise
3.
Water Environ Res ; 94(5): e10720, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582742

RESUMO

As bromate removal and reduction can be also achieved using metals, aluminum (Al) appears as the most promising one for reduction of bromate because Al is abundant element and exhibits a high reduction power. Reactions between bromate and Al shall be even enhanced through ultrasound (US) process because US can facilitate mass transfer on liquid/solid interfaces and clean surfaces via generating microscale turbulence to facilitate reactions. Therefore, the aim of this study is for the first time to investigate the effect of US on bromate removal by Al metal. Specifically, Al particle would be treated by HCl to afford HCl-treated Al (HCTAL), which is capable of removing bromate and even reducing it to bromide. Such a mechanism is also validated by density function theory calculation through determining adsorption energy as -152.8 kJ/mole, and oxygen atoms of bromate would be extracted and reacted with Al atoms, releasing bromide ion. US not only facilitated bromate removal by further increasing removal capacity under the acidic condition but also suppressed the inhibitive effect from basicity at relatively high pH. The spent HCTAL could still remove bromate and convert it to bromide after regeneration. These features indicate that US considerably enhances bromate removal by Al. PRACTITIONER POINTS: Bromate removed by Al is elucidated by DFT calculation with Eabsorption = -152.8 kJ/mole. Oxygen atoms of bromate are extracted and reacted with Al atoms, releasing bromide ion. A higher power of ultrasound would substantially enhance bromate removal efficiency. Ultrasound also suppresses the inhibitive effect from basicity at relatively high pH. With ultrasound, the interference of co-existing anions on bromate removal is lessened.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Alumínio , Bromatos , Brometos , Desinfecção , Oxigênio , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA