Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Shock ; 57(2): 309-315, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907119

RESUMO

ABSTRACT: ERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability. A wide variety of diseases and clinical conditions including trauma-hemorrhagic shock and burn injury are associated with microvascular dysfunctions, which causes excessive microvascular permeability, tissue edema and eventually, multiple organ dysfunction and death. The main purpose of this study was to determine the specific role of ERG in regulating microvascular permeability in human lung microvascular endothelial cells (HLMEC) and to evaluate if exogenous ERG will protect the barrier. The HLMECs were grown on Transwell inserts as monolayers and were transfected with ERG CRISPR/cas9 knockdown plasmid, ERG CRISPR activation plasmid, recombinant ERG protein or their respective controls. Recombinant vascular endothelial growth factor (VEGF) was used as an inducer of permeability for evaluating the effect of ERG activation on permeability. Changes in barrier integrity and permeability were studied using monolayer permeability assay and immunofluorescence of adherens junction proteins (VE-cadherin and ß-catenin) respectively. CRISPR/cas9-based ERG knockdown as well as VEGF treatment induced monolayer hyperpermeability, VE-cadherin, and ß-catenin junctional relocation and cytoskeletal F-actin stress fiber formation. CRISPR based ERG activation and recombinant ERG transfection attenuated VEGF-induced monolayer hyperpermeability. ERG activation preserved the adherens junctions and cytoskeleton. These results demonstrate that ERG is a potent regulator of barrier integrity and permeability in human lung microvascular endothelial cells and endogenously or exogenously enhancing ERG provides protection against barrier dysfunction and hyperpermeability.


Assuntos
Junções Aderentes/genética , Permeabilidade Capilar/genética , Células Endoteliais , Endotélio Vascular/citologia , Microvasos , Ativação Transcricional , Células Cultivadas , Humanos , Regulador Transcricional ERG/genética
2.
Methods Mol Biol ; 2319: 87-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331246

RESUMO

Blood vessel formation is a fine-regulated process and interfering with blood vessel formation causes embryonic lethality as well as associated with many diseases in the adult, including inflammatory, ischemic, and cancer metastatic diseases. Brain contains abundant blood vessels and has some unique physiological functions, such as blood-brain barrier. Due to the thickness and opaque characters of the tissues, it is a challenge to visualize the three-dimensional structures of the brain blood vessels in the mouse. Therefore, establishing a protocol to display the three-dimensional structures in the brain is required for exploring the regulatory molecular mechanisms in brain blood vessel formation. In this manuscript, we introduced a whole-mount and a vibratome thick section of mouse embryonic hindbrain to display the three-dimensional structures of brain vascular system.


Assuntos
Dissecação/métodos , Neovascularização Fisiológica , Rombencéfalo/irrigação sanguínea , Coloração e Rotulagem/métodos , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/metabolismo , Dissecação/instrumentação , Células Endoteliais/metabolismo , Imunofluorescência , Camundongos , Microscopia Confocal , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/metabolismo
3.
J Trauma Acute Care Surg ; 89(3): 435-440, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467458

RESUMO

BACKGROUND: Traumatic brain injury (TBI) has significant morbidity and cost implications. Primary treatment modalities aim to decrease intracranial pressure; however, therapies targeting the underlying pathophysiology of a TBI are limited. The TBI-induced microvascular leak and secondary injury are largely due to proteolysis of the blood-brain barrier (BBB) by matrix metalloproteinase-9. We previously observed doxycycline's inhibitory affinity on matrix metalloproteinase-9 resulting in preserved BBB integrity in nonsurvival murine studies. This study sought to determine the effect of doxycycline on functional motor and behavioral outcomes in the setting of a TBI murine survival model. METHODS: C57BL/6J mice were assigned to a sham, TBI, or TBI with doxycycline arm. A moderate TBI was induced utilizing a controlled cortical impactor. The TBI with doxycycline cohort received a dose of doxycycline (20 mg/kg) 2 hours after injury and every 12 hours until postoperative day (POD) 6. All mice underwent preoperative testing for weight, modified neurological severity score, wire grip, and ataxia analysis (DigiGait). Postoperative testing was performed on POD 1, POD 3, and POD 6 for the same measures. SAS 9.4 was used for comparative analysis. RESULTS: Fifteen sham mice, 15 TBI mice, and 10 TBI with doxycycline mice were studied. Mice treated with doxycycline had significantly improved modified neurological severity score and wire grip scores at POD 1 (all p < 0.05). Mice treated with doxycycline had significantly improved ataxia scores by POD 3 and POD 6 (all p < 0.05). There was no significant difference in rate of weight change between the three groups. CONCLUSION: Mice treated with doxycycline following TBI demonstrated improved behavioral and motor function suggesting doxycycline's role in preserving murine BBB integrity. Examining the role of doxycycline in human TBIs is warranted given the relative universal accessibility, affordability, and safety profile of doxycycline.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Doxiciclina/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Células Cultivadas , Modelos Animais de Doenças , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
J Trauma Acute Care Surg ; 85(5): 968-976, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29985239

RESUMO

BACKGROUND: The integrity of the blood-brain barrier (BBB) is paramount in limiting vasogenic edema following traumatic brain injury (TBI). The purpose of this study was to ascertain if quetiapine, an atypical antipsychotic commonly used in trauma/critical care for delirium, protects the BBB and attenuates hyperpermeability in TBI. METHODS: The effect of quetiapine on hyperpermeability was examined through molecular modeling, cellular models in vitro and small animal models in vivo. Molecular docking was performed with AutoDock Vina to matrix metalloproteinase-9. Rat brain microvascular endothelial cells (BMECs) were pretreated with quetiapine (20 µM; 1 hour) followed by an inflammatory activator (20 µg/mL chitosan; 2 hours) and compared to controls. Immunofluorescence localization for tight junction proteins zonula occludens-1 and adherens junction protein ß-catenin was performed. Human BMECs were grown as a monolayer and pretreated with quetiapine (20 µM; 1 hour) followed by chitosan (20 µg/mL; 2 hours), and transendothelial electrical resistance was measured. C57BL/6 mice (n = 5/group) underwent mild to moderate TBI (controlled cortical impactor) or sham craniotomy. The treatment group was given 10 mg/kg quetiapine intravenously 10 minutes after TBI. The difference in fluorescence intensity between intravascular and interstitium (ΔI) represented BBB hyperpermeability. A matrix metalloproteinase-9 activity assay was performed in brain tissue from animals in the experimental groups ex vivo. RESULTS: In silico studies showed quetiapine thermodynamically favorable binding to MMP-9. Junctional localization of zonula occludens-1 and ß-catenin showed retained integrity in quetiapine-treated cells as compared with the chitosan group in rat BMECs. Quetiapine attenuated monolayer permeability compared with chitosan group (p < 0.05) in human BMECs. In the animal studies, there was a significant decrease in BBB hyperpermeability and MMP-9 activity when compared between the TBI and TBI plus quetiapine groups (p < 0.05). CONCLUSION: Quetiapine treatment may have novel anti-inflammatory properties to provide protection to the BBB by preserving tight junction integrity. LEVEL OF EVIDENCE: level IV.


Assuntos
Antipsicóticos/farmacologia , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Células Endoteliais/fisiologia , Fumarato de Quetiapina/farmacologia , Junções Íntimas/metabolismo , Animais , Encéfalo/irrigação sanguínea , Células Cultivadas , Quitosana/farmacologia , Simulação por Computador , Modelos Animais de Doenças , Impedância Elétrica , Humanos , Microscopia Intravital , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/diagnóstico por imagem , Modelos Moleculares , Permeabilidade/efeitos dos fármacos , Ratos , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
5.
Lymphat Res Biol ; 16(1): 56-64, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29359999

RESUMO

It is theorized that toxic agents are transported from the hyperpermeable gut of burn victims through the lymph, to the systemic circulation, causing global injury. We believe that immune cells respond to leakage of "toxic lymph" following trauma causing the attraction of these cells to the perilymphatic space. To test this, we utilized a model of burn on rats to examine changes in a single immune cell population associated with mesenteric lymphatic dysfunction. We examined the ability of serum from these animals to increase permeability in lymphatic endothelial monolayers and disrupt cellular junctions. We also treated burn animals with doxycycline, an inhibitor of microvascular permeability, and observed the effects on immune cell populations, morphometry, and lymphatic endothelial permeability. Burn injury increased the number of MHCII+ immune cells along the vessel (>50%). The size and shape of these cells also changed significantly following burn injury. Serum from burn animals increased lymphatic endothelial permeability (∼1.5-fold) and induced breaks in VE-cadherin staining. Doxycycline treatment blocked the accumulation of immune cells along the vessel, whereas serum from doxycycline-treated animals failed to increase lymphatic endothelial permeability. The size of cells along the vessel in doxycycline-treated burn animals was not affected, suggesting that the cells already present on the lymphatic vessels still respond to substances in the lymph. These findings suggest that factors produced during burn can induce lymphatic endothelial barrier disruption and lymph produced during traumatic injury can influence the attraction and morphology of immune cell populations along the vessel.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Doxiciclina/farmacologia , Células Endoteliais/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/imunologia , Vasos Linfáticos/efeitos dos fármacos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Queimaduras/genética , Queimaduras/imunologia , Queimaduras/patologia , Caderinas/genética , Caderinas/imunologia , Permeabilidade Capilar , Movimento Celular/efeitos dos fármacos , Tamanho Celular , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Linfático/efeitos dos fármacos , Endotélio Linfático/imunologia , Endotélio Linfático/patologia , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Linfa/citologia , Linfa/efeitos dos fármacos , Linfa/imunologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Mesentério/efeitos dos fármacos , Mesentério/imunologia , Mesentério/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Ratos , Ratos Sprague-Dawley
6.
Am J Surg ; 211(1): 197-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26601648

RESUMO

BACKGROUND: Burns induce microvascular hyperpermeability. We hypothesize that this occurs partly through an imbalance between matrix metalloproteinases (MMPs) and endogenous MMP inhibitors such as tissue inhibitors of metalloproteinases (TIMPs), and that such derangements can be attenuated with the use of TIMP-2. METHOD: Rats underwent either sham or burn: serum and tissue were collected. Western blot was used to examine MMP-9 and TIMP-2 levels and MMP activity was assayed from lung tissue. Rat lung microvascular endothelial cells were used to assess monolayer permeability and evaluate the adherens junction proteins ß-catenin, vascular endothelial cadherin and filamentous actin after exposure to burn serum ± TIMP-2. RESULTS: Lung tissue from burn animals showed increased MMP activity, decreased levels of TIMP-2, and no difference in levels of active MMP-9 in burn vs control groups. Burn serum increased monolayer permeability, damaged adherens junction proteins, and incited actin stress fiber formation; TIMP-2 attenuated these derangements. CONCLUSIONS: Burns may lower TIMP-2 levels and increase MMP activity and that TIMP-2 application in vitro may attenuate burn-induced hyperpermeability and decreases damage to endothelial structural proteins. These links warrant further investigation.


Assuntos
Queimaduras/enzimologia , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Microvasos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Animais , Biomarcadores/metabolismo , Western Blotting , Queimaduras/tratamento farmacológico , Queimaduras/fisiopatologia , Permeabilidade Capilar/fisiologia , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/fisiopatologia , Masculino , Microvasos/enzimologia , Microvasos/fisiopatologia , Substâncias Protetoras/metabolismo , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Sprague-Dawley , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/uso terapêutico
7.
J Trauma Acute Care Surg ; 79(4): 609-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26402535

RESUMO

BACKGROUND: Hemorrhagic shock (HS)-induced microvascular hyperpermeability involves disruption of endothelial cell adherens junctions leading to increase in paracellular permeability. ß-Catenin, an integral component of the adherens junctional complex and Wnt pathway, and caspase 3 via its apoptotic signaling regulate endothelial cell barrier integrity. We have hypothesized that inhibiting phosphorylation of ß-catenin and caspase 3 activity using glycogen synthase kinase 3-specific inhibitor SB216763 would attenuate microvascular hyperpermeability following HS. METHODS: In Sprague-Dawley rats, HS was induced by withdrawing blood to reduce mean arterial pressure to 40 mm Hg for 60 minutes followed by resuscitation. Rats were given SB216763 (600 µg/kg) intravenously 10 minutes before shock. To study microvascular permeability, the rats were intravenously injected with fluorescein isothiocyanate (FITC)-albumin (50 mg/kg), and its flux across the mesenteric postcapillary venules was determined using intravital microscopy. In cell culture studies, rat lung microvascular endothelial cell monolayers grown on Transwell plates were pretreated with SB216763 (5 µM) followed by BAK (5 µg/mL) and caspase 3 (5 µg/mL) protein transfection. FITC-albumin (5 mg/mL) flux across cell monolayers indicates change in monolayer permeability. Activity of canonical Wnt pathway was determined by luciferase assay. Caspase 3 enzyme activity was assayed fluorometrically. RESULTS: The HS group showed significant increase in FITC-albumin extravasation (p < 0.05) compared with sham. SB216763 significantly decrease HS-induced FITC-albumin extravasation (p < 0.05). Pretreatment with SB216763 protected against a BAK-induced increase in rat lung microvascular endothelial cell monolayer permeability and caspase 3 activity but failed to show similar results with a caspase 3-induced increase in monolayer permeability. Wnt3a treatment showed an increase in ß-catenin-dependent T-cell factor-mediated transcription. CONCLUSION: Inhibiting phosphorylation of ß-catenin and caspase 3 activity using glycogen synthase kinase 3-specific inhibitor SB216763 help regulates HS-induced microvascular hyperpermeability.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Indóis/farmacologia , Maleimidas/farmacologia , Choque Hemorrágico/fisiopatologia , Junções Aderentes/fisiologia , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Técnicas de Cultura de Células , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
8.
J Physiol Biochem ; 70(4): 971-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25392259

RESUMO

Tumor necrosis factor-α (TNF-α), a pro-apoptotic cytokine, is involved in vascular hyperpermeability, tissue edema, and inflammation. We hypothesized that TNF-α induces microvascular hyperpermeability through the mitochondria-mediated intrinsic apoptotic signaling pathway. Rat lung microvascular endothelial cells grown on Transwell inserts, chamber slides, or dishes were treated with recombinant TNF-α (10 ng/ml) in the presence or absence of a caspase-3 inhibitor, Z-DEVD-FMK (100 µM). Fluorescein isothiocyanate (FITC)-albumin (5 mg/ml) was used as a marker of monolayer permeability. Mitochondrial reactive oxygen species (ROS) was determined using dihydrorhodamine 123 and mitochondrial transmembrane potential using JC-1. The adherens junction integrity and actin cytoskeletal organization were studied using ß-catenin immunofluorescence and rhodamine phalloidin, respectively. Caspase-3 activity was measured fluorometrically. The pretreatment with Z-DEVD-FMK (100 µM) attenuated TNF-α-induced (10 ng/ml) disruption of the adherens junctions, actin stress fiber formation, increased caspase-3 activity, and monolayer hyperpermeability (p < 0.05). TNF-α (10 ng/ml) treatment resulted in increased mitochondrial ROS formation and decreased mitochondrial transmembrane potential. Intrinsic apoptotic signaling-mediated caspase-3 activation plays an important role in regulating TNF-α-induced endothelial cell hyperpermeability.


Assuntos
Apoptose , Endotélio Vascular/citologia , Microvasos/citologia , Fator de Necrose Tumoral alfa/fisiologia , Junções Aderentes/metabolismo , Animais , Permeabilidade Capilar , Caspase 3/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Potencial da Membrana Mitocondrial , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Am J Surg ; 208(6): 954-60; discussion 960, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312844

RESUMO

Traumatic brain injuries cause vascular hyperpermeability. Tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and caspase-3 may be important in these processes but the relationship between them has not been investigated. We hypothesized that TNF-α regulates caspase-3-mediated hyperpermeability and blood brain barrier damage and hyperpermeability directly or indirectly via activation of MMP-9. To test this, rat brain microvascular endothelial cells were treated with TNF-α with or without inhibition of MMP-9. Monolayer permeability was measured, zonula occludens-1 and F-actin configuration were examined, and MMP-9 and caspase-3 activities were quantified. TNF-α increased monolayer permeability, damaged zonula occludens-1, induced filamentous-actin stress fiber formation, and increased both MMP-9 and caspase-3 activities. Inhibition of MMP-9 attenuated these changes. These data highlight a novel link between TNF-α and MMP-9 and show that TNF-α regulated caspase-3-mediated hyperpermeability and vascular damage may be linked to MMP-9 in vitro. These findings augment the understanding of traumatic brain injury and pave the way for improved treatment.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Lesões Encefálicas/metabolismo , Caspase 3/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Ratos , Proteína da Zônula de Oclusão-1/metabolismo
10.
J Trauma Acute Care Surg ; 77(6): 899-905; discussion 905, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25051382

RESUMO

BACKGROUND: Burns induce systemic inflammatory reactions and vascular hyperpermeability. Breakdown of endothelial cell adherens junctions is integral in this process, and reactive oxygen species (ROS) and proteolytic enzymes such as matrix metalloproteinase-9 (MMP-9) play pivotal roles therein. Outside trauma, melatonin has shown to exhibit anti-MMP activity and to be a powerful antioxidant. Consequently, we hypothesized that burn-induced junctional damage and hyperpermeability could be attenuated with melatonin. METHODS: Sprague-Dawley rats were assigned to sham or burn groups. Fluorescein isothiocyanate-bovine albumin was administered intravenously. Venules were examined with intravital microscopy; fluorescence intensities were measured intravascularly and extravascularly. Serum was collected. Rat lung microvascular endothelial cells were grown as monolayers and divided into four groups: sham serum and burn serum with and without melatonin pretreatment. Fluorescein isothiocyanate-bovine albumin flux was measured. Immunofluorescence for adherens junction proteins and staining for actin were performed, and images were captured. Cells were grown on 96 well plates, and ROS species generation following application of burn and sham serum was analyzed with and without melatonin. Statistical analysis was conducted with the Student's t test. RESULTS: Intravital microscopy data revealed an increase in vascular hyperpermeability following burn (p < 0.05). Monolayer permeability was increased with burn serum (p < 0.05); this was attenuated with melatonin (p < 0.05). Immunofluorescence showed damage of rat lung microvascular endothelial cell adherens junctions with burn serum exposure, and melatonin restored integrity. Rhodamine phalloidin staining showed filamentous actin stress fiber formation after burn serum application, and melatonin decreased this. Burn serum significantly increased ROS species generation (p < 0.05), and melatonin negated this (p < 0.05). CONCLUSION: Burns damage endothelial adherens junctions and induce microvascular hyperpermeability; melatonin attenuates this process. This insight into the mechanisms of burn-induced fluid leak suggests the role of ROS and MMP-9 but more importantly hints at the possibility of new treatments to combat vascular hyperpermeability in burns.


Assuntos
Queimaduras/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/lesões , Melatonina/uso terapêutico , Microvasos/lesões , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/fisiologia , Animais , Queimaduras/fisiopatologia , Permeabilidade Capilar/fisiologia , Endotélio Vascular/química , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Microscopia de Fluorescência , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise
11.
J Trauma Acute Care Surg ; 75(6): 1040-6; discussion 1046, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256679

RESUMO

BACKGROUND: Burns induce systemic microvascular hyperpermeability resulting in shock, and if untreated, cardiovascular collapse. Damage to the endothelial cell adherens junctional complex plays an integral role in the pathophysiology of microvascular hyperpermeability. We hypothesized that doxycycline, a known inhibitor of matrix metalloproteinases (MMPs), could attenuate burn-induced adherens junction damage and microvascular hyperpermeability. METHODS: Male Sprague-Dawley rats were divided into sham, burn, and burn + doxycycline (n = 5). The experimental groups underwent a 30% total body surface area full-thickness burn. Fluorescein isothiocyanate-albumin was administered intravenously. Mesenteric postcapillary venules were examined with intravital microscopy to determine flux of albumin from the intravascular space to the interstitium. Fluorescence intensity was compared between the intravascular space to the interstitium at 30, 60, 80, 100, 120, 140, 160, and 180 minutes after burn. Parallel experiments were performed in which rat lung microvascular endothelial cells were treated with sera from sham or burn animals as well as separate groups pretreated with either doxycycline or a specific inhibitor of MMP-9. Monolayer permeability was determined by fluorescein isothiocyanate albumin-flux across Transwell plates and immunofluorescense staining for the adherens junction protein ß-catenin was performed. Western blot and gelatin zymography were performed to assess MMP-9 level and activity. RESULTS: MMP-9 levels were increased after burn. Monolayer permeability was significantly increased with burn serum treatment; this was attenuated with doxycycline as well as the specific MMP-9 inhibitor (p < 0.05). Damage of the endothelial cell adherens junction complex was induced by serum from burned rats, and doxycycline restored the integrity of the adherens junction similar to the MMP-9 inhibitor. Intravital microscopy revealed microvascular hyperpermeability after burn; this was attenuated with doxycycline (p < 0.05). CONCLUSION: Burns induce microvascular hyperpermeability via endothelial adherens junction disruption associated with MMP-9, and this is attenuated with doxycycline.


Assuntos
Queimaduras/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Doxiciclina/farmacocinética , Animais , Antibacterianos/farmacocinética , Queimaduras/metabolismo , Queimaduras/patologia , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Masculino , Microcirculação/efeitos dos fármacos , Microscopia de Vídeo , Ratos , Ratos Sprague-Dawley
12.
J Surg Res ; 184(1): 628-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23731686

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α), a cytotoxic cytokine, induces endothelial cell barrier dysfunction and microvascular hyperpermeability, leading to tissue edema, a hallmark of traumatic injuries. The objective of the present study was to determine whether B-cell lymphoma-extra large (Bcl-xL), an antiapoptotic protein, would regulate and protect against TNF-α-mediated endothelial cell barrier dysfunction and microvascular hyperpermeability. METHODS: Rat lung microvascular endothelial cells were grown as monolayers on Transwell membranes, and fluorescein isothiocyanate-bovine albumin flux (5 mg/mL) across the monolayer was measured fluorometrically to indicate changes in monolayer permeability. The rat lung microvascular endothelial cell adherens junctional integrity and actin cytoskeleton was studied using ß-catenin immunofluorescence and rhodamine phalloidin dye, respectively. Pretreatment of caspase-8 inhibitor (Z-IETD-FMK, 100 µM) for 1 hour and transfection of Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA (10 µM) for 48 hours were performed to study their respective effects on TNF-α-induced (10 ng/mL; 1-hour treatment) monolayer permeability. Recombinant Bcl-xL protein (2.5 µg/ml) was transfected in rat lung microvascular endothelial cells for 1 hour, and its effect on permeability was demonstrated using a permeability assay. Caspase-3 activity was assayed fluorometrically. RESULTS: Z-IETD-FMK pretreatment protected the adherens junctions and decreased TNF-α-induced monolayer hyperpermeability. Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA transfection attenuated the TNF-α-induced increase in monolayer permeability. Recombinant Bcl-xL protein showed protection against TNF-α-induced actin stress fiber formation, an increase in caspase-3 activity, and monolayer hyperpermeability. CONCLUSIONS: Our results have demonstrated the protective effects of recombinant Bcl-xL protein against TNF-α-induced endothelial cell adherens junction damage and microvascular endothelial cell hyperpermeability. These findings support the potential for Bcl-xL-based drug development against microvascular hyperpermeability and tissue edema.


Assuntos
Edema/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína bcl-X/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Edema/patologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Pulmão/citologia , Oligopeptídeos/farmacologia , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteína bcl-X/farmacologia , beta Catenina/metabolismo
13.
Am J Surg ; 205(4): 419-25, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23375756

RESUMO

BACKGROUND: Microvascular hyperpermeability that occurs in hemorrhagic shock and burn trauma is regulated by the apoptotic signaling pathway. We hypothesized that tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) would promote hyperpermeability directly or by interacting with other signaling pathways. METHODS: Rat lung microvascular endothelial cells (RLMECs) grown on Transwell membranes (Corning Life Sciences, Lowell, MA) were treated with recombinant human TRAIL (10, 50, and 100 ng/mL) for 6 hours or TRAIL (100 ng/mL) + LY294002 (a PI3K inhibitor; 20 µmol/L), Z-DEVD-FMK (a caspase-3 inhibitor; 10 µmol/L), or the inhibitors alone. Fluorescein isothiocyanate (FITC)-albumin flux was an indicator of permeability. Caspase-3 activity was measured fluorometrically. Adherens junction integrity was studied using ß-catenin immunofluorescence. RESULTS: TRAIL + LY294002, but not TRAIL alone, induced monolayer hyperpermeability (P < .05), and caspase-3 activity (P < .05), and disrupted the adherens junctions. Z-DEVD-FMK attenuated hyperpermeability and protected the adherens junctions. CONCLUSIONS: TRAIL-induced microvascular hyperpermeability is phosphatidylinositol 3-kinase (PI3K)-dependent and may be mediated by caspase-3 cleavage of the endothelial adherens junctional complex.


Assuntos
Junções Aderentes/fisiologia , Permeabilidade Capilar/fisiologia , Caspase 3/metabolismo , Células Endoteliais/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Cromonas/metabolismo , Humanos , Morfolinas/metabolismo , Oligopeptídeos/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , beta Catenina/metabolismo
14.
J Trauma Acute Care Surg ; 74(2): 516-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23354245

RESUMO

BACKGROUND: Microvascular hyperpermeability following conditions such as hemorrhagic shock occurs mainly owing to disruption of the adherens junctional protein complex in endothelial cells. The objective of this study was to examine the action of staurosporine, a potent activator of endogenous caspase 3 on the adherens junction and the cellular pathway through which it causes possible endothelial cell barrier dysfunction. METHODS: Rat lung microvascular endothelial cell (RLMEC) permeability was measured by fluorescein isothiocyanate-albumin flux across the monolayer in a Transwell plate. Integrity of the endothelial cell adherens junctions was studied using immunofluorescence of ß-catenin and vascular endothelial-cadherin. Mitochondrial reactive oxygen species formation was determined by using dihydrorhodamine 123 and mitochondrial transmembrane potential by JC-1 fluorescent probe and flow cytometry. Caspase 3 enzyme activity was assayed fluorometrically. Cell death assay in RLMECs was performed using propidium iodide staining and analyzed by flow cytometry. RESULTS: Staurosporine (1 µM)-treated RLMEC monolayers showed significant increase in permeability, which was decreased by pretreatment with caspase 3 specific inhibitor, Z-DEVD-FMK (p < 0.05). Immunofluorescence studies showed staurosporine induced disruption of the adherens junction, which was reversed by Z-DEVD-FMK. Staurosporine treatment led to an increase in mitochondrial reactive oxygen species formation and a decrease in mitochondrial transmembrane potential. Furthermore, staurosporine induced a significant increase in caspase 3 activity (p < 0.05) but not cell death in RLMECs (p < 0.05). CONCLUSION: Staurosporine-induced disruption of the adherens junction and microvascular endothelial cell hyperpermeability is associated with the activation of mitochondrial "intrinsic" apoptotic signaling cascade but without causing endothelial cell death. Our results suggest that prevention of mitochondrial-mediated activation of caspase 3 has therapeutic potential against microvascular hyperpermeability.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Caspase 3/metabolismo , Endotélio Vascular/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Estaurosporina/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/fisiologia , Animais , Permeabilidade Capilar/fisiologia , Células Cultivadas , Endotélio Vascular/fisiologia , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Microscopia de Fluorescência , Microvasos/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
Shock ; 39(2): 161-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23324886

RESUMO

Hemorrhagic shock (HS)-induced microvascular hyperpermeability poses a serious challenge in the management of trauma patients. Microvascular hyperpermeability occurs mainly because of the disruption of endothelial cell adherens junctions, where the "intrinsic" apoptotic signaling plays a regulatory role. The purpose of this study was to understand the role of the "extrinsic" apoptotic signaling molecules, particularly Fas-Fas ligand interaction in microvascular endothelial barrier integrity. Rat lung microvascular endothelial cells (RLMECs) were exposed to HS serum in the presence or absence of the Fas ligand inhibitor, FasFc. The effect of HS serum on Fas receptor and Fas ligand expression on RLMECs was determined by flow cytometry. Endothelial cell permeability was determined by monolayer permeability assay and the barrier integrity by ß-catenin immunofluorescence. Mitochondrial reactive oxygen species formation was determined using dihydrorhodamine 123 probe by fluorescent microscopy. Mitochondrial transmembrane potential was studied by fluorescent microscopy as well as flow cytometry. Caspase 3 enzyme activity was assayed fluorometrically. Rat lung microvascular endothelial cells exposed to HS serum showed increase in Fas receptor and Fas ligand expression levels. FasFc treatment showed protection against HS serum-induced disruption of the adherens junctions and monolayer hyperpermeability (P < 0.05) in the endothelial cells. Pretreatment with FasFc also decreased HS serum-induced increase in mitochondrial reactive oxygen species formation, restored HS serum-induced drop in mitochondrial transmembrane potential, and reduced HS serum-induced caspase 3 activity in RLMECs. These findings open new avenues for drug development to manage HS-induced microvascular hyperpermeability by targeting the Fas-Fas ligand-mediated pathway.


Assuntos
Apoptose/fisiologia , Permeabilidade Capilar/fisiologia , Proteína Ligante Fas/antagonistas & inibidores , Pulmão/metabolismo , Choque Hemorrágico/metabolismo , Receptor fas/antagonistas & inibidores , Animais , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Comunicação Celular/fisiologia , Endotélio Vascular/metabolismo , Pulmão/citologia , Masculino , Microvasos/enzimologia , Microvasos/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Arthroscopy ; 29(1): 113-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23200846

RESUMO

PURPOSE: To critically evaluate the effect of marrow stimulation (MS) on the extent of healing and the local biological environment after meniscal injury in ligamentously stable knees in a rabbit model. METHODS: A reproducible 1.5-mm cylindrical defect was created in the avascular portion of the anterior horn of the medial meniscus bilaterally in 18 New Zealand White rabbits (36 knees). In right knees (MS knees), a 2.4-mm Steinman pin was drilled into the apex of the femoral intercondylar notch and marrow contents were observed spilling into the joint. Left knees served as controls. Rabbits were killed in 3 groups (n = 6 rabbits each) at 1, 4, and 12 weeks with meniscal harvest and blinded histomorphometric and histologic evaluation using an established 3-component tissue quality score (range, 0 to 6). One-week specimens were also evaluated for the presence of proregenerative cytokines using immunohistochemistry. RESULTS: The mean proportion of the avascular zone defect bridged by reparative tissue was greater in MS knees than in controls at each endpoint (1 week, 55% v 30%, P = .02; 4 weeks, 71% v 53%, P = .047; 12 weeks, 96% v 77%, P = .16). Similarly, there was a consistent trend toward superior tissue quality scores in knees treated with MS compared with controls (1 week, 1.8 v 0.3, P = .03; 4 weeks, 4.3 v 2.8, P = .08; 12 weeks, 5.9 v 4.5, P = .21). No statistically significant differences, however, were observed at the 12-week endpoint. Increased staining for insulin-like growth factor I, transforming growth factor-ß, and platelet-derived growth factor was observed in regenerated tissue, compared with native meniscal tissue, in all specimens at 1 week. Staining density for all growth factors was similar, however, in reparative tissue of MS and control knees. CONCLUSIONS: The results of this study suggest that marrow stimulation leads to modest improvements in quality and quantity of reparative tissue bridging a meniscal defect, particularly during the early recovery period. CLINICAL RELEVANCE: Clinical evaluation of marrow stimulation techniques designed to enhance healing in isolated meniscus repair surgery may be indicated.


Assuntos
Artroplastia Subcondral , Medula Óssea/fisiologia , Meniscos Tibiais/cirurgia , Cicatrização/fisiologia , Animais , Condrócitos/fisiologia , Citocinas/análise , Feminino , Fibroblastos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/análise , Meniscos Tibiais/química , Meniscos Tibiais/patologia , Modelos Animais , Coelhos , Regeneração , Método Simples-Cego , Coloração e Rotulagem , Lesões do Menisco Tibial , Fatores de Tempo
17.
J Orthop Trauma ; 26(10): 579-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22430525

RESUMO

OBJECTIVES: Ischemia-reperfusion (I/R) injury can have detrimental effects on skeletal muscle. We have shown that vessel permeability can be minimized in a hypothermic setting and also by administering the nitric oxide synthase (NOS) stimulator, L-arginine, at physiologic temperatures. The purpose of this study was to examine and compare skeletal muscle contractility after an I/R insult during hypothermic conditions, warm conditions, and also with the administration of L-arginine at physiologic temperatures. We hypothesized that hypothermia and L-arginine administration will also demonstrate protective effects to skeletal muscle contractility. METHODS: Using Sprague-Dawley rats, the extensor digitorum longus muscle was rotated on its vascular pedicle to a thermo-controlled stage. Ischemia was established using an atraumatic femoral artery tourniquet. Reperfusion was performed under control and experimental conditions including local hypothermia and intravenous L-arginine. After harvesting experimental muscles, contractility was then quantified by using a tissue bath stimulator with force transducers. RESULTS: Warm reperfusion resulted in marked decrease in muscle contractility compared with sham animals. Local hypothermia showed statistically significant preservation of contractility compared with the sham group. This protective effect was recapitulated by the application of NOS inducers (L-arginine) at warm conditions. CONCLUSIONS: These findings demonstrate that hypothermia and L-arginine are protective of skeletal muscle contractility after an I/R injury. The results presented may have profound effects on future therapeutic recommendations and suggest possible pathways for clinical intervention to modulate I/R injury, which is commonplace in orthopaedic trauma and reconstructive surgery.


Assuntos
Arginina/farmacologia , Hipotermia Induzida , Músculo Esquelético/fisiopatologia , Óxido Nítrico Sintase , Traumatismo por Reperfusão/terapia , Animais , Modelos Animais de Doenças , Hipertermia Induzida/efeitos adversos , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Ratos , Ratos Sprague-Dawley , Reperfusão/métodos , Traumatismo por Reperfusão/fisiopatologia
18.
Am J Surg ; 199(4): 542-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20359571

RESUMO

BACKGROUND: Mitochondria-mediated apoptotic signaling contributes to microvascular hyperpermeability. We hypothesized that cyclosporine A (CsA), which protects mitochondrial transition pores, would attenuate hyperpermeability independent of its calcineurin inhibitory property. METHODS: Hyperpermeability was induced in microvascular endothelial cell monolayers using proapoptotic BAK or active caspase-3 after CsA or a specific calcineurin inhibitor, calcineurin autoinhibitory peptide (CIP), treatment. Permeability was measured based on fluorescein isothiocyanate-albumin flux across the monolayers. Mitochondrial transmembrane potential (MTP) was determined using 5,5',6,6'-tetrachoro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide. Mitochondrial release of cytochrome c was measured using an enzyme-linked immunosorbent assay and caspase-3 activity fluorometrically. RESULTS: CsA-attenuated (10 nmol/L) but not CIP-attenuated (100 mumol/L) BAK induced hyperpermeability (P < .05), CsA- but not CIP-attenuated BAK induced a decrease in MTP and an increase in cytochrome c levels and caspase-3 activity (P < .05). CsA and CIP were ineffective against caspase-3-induced hyperpermeability. CONCLUSIONS: CsA attenuated hyperpermeability by protecting MTP, thus preventing mitochondria-mediated apoptotic signaling. The protective effect of CsA is independent of calcineurin inhibition.


Assuntos
Calcineurina/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Ciclosporina/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Pulmão/irrigação sanguínea , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Inibidores de Caspase , Citocromos c/metabolismo , Microcirculação , Mitocôndrias/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Shock ; 34(3): 229-35, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20160663

RESUMO

Vascular hyperpermeability is a clinical complication associated with hemorrhagic shock (HS) and occurs mainly because of the disruption of the adherens junctional complex. The objective of this study was to understand the role of 17beta-estradiol in HS-induced hyperpermeability particularly focusing on estrogen receptors. In male Sprague-Dawley rats, HS was induced by withdrawing blood to reduce the mean arterial pressure to 40 mmHg for 1 hour followed by 1 hour of resuscitation to 90 mmHg. The study groups were 17beta-estradiol, tamoxifen, fulvestrant plus 17beta-estradiol, propyl pyrazole triol plus 17beta-estradiol, and diarylpropionitrile plus 17beta-estradiol. Intravital microscopy was used to study changes in mesenteric postcapillary venules. Mitochondrial reactive oxygen species formation was studied in vivo using dihydrorhodamine 123. The mitochondrial transmembrane potential was studied using the fluorescent cationic probe 5,5',6,6'tetrachloro-1,1',3,3'tetraethylbenzimidazolyl carbocyanine iodide (JC-1). The mesenteric microvasculature was analyzed for cytochrome c levels by enzyme-linked immunosorbent assay and caspase-3 activity by a fluorometric assay. Our results demonstrated that 17beta-estradiol attenuated HS-induced hyperpermeability. Fulvestrant reversed this protective effect (P < 0.05). Tamoxifen 5 mg/kg attenuated HS-induced hyperpermeability, whereas 10 mg/kg induced permeability (P < 0.05). Both alpha and beta estrogen receptor agonists inhibited HS-induced hyperpermeability (P < 0.05). 17beta-Estradiol decreased HS-induced reactive oxygen species formation and restored mitochondrial transmembrane potential. 17beta-Estradiol decreased both cytosolic cytochrome c level and activation of caspase-3 (P < 0.05). These findings suggest that 17beta-estradiol protects the microvasculature after HS, and that this protection may be mediated through the alpha and beta estrogen receptors.


Assuntos
Síndrome de Vazamento Capilar/prevenção & controle , Permeabilidade Capilar/efeitos dos fármacos , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Choque Hemorrágico/fisiopatologia , Animais , Síndrome de Vazamento Capilar/etiologia , Relação Dose-Resposta a Droga , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Estradiol/toxicidade , Moduladores de Receptor Estrogênico/administração & dosagem , Moduladores de Receptor Estrogênico/farmacologia , Moduladores de Receptor Estrogênico/uso terapêutico , Moduladores de Receptor Estrogênico/toxicidade , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Fulvestranto , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mesentério/irrigação sanguínea , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Fenóis , Propionatos/administração & dosagem , Propionatos/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Choque Hemorrágico/complicações , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Tamoxifeno/toxicidade , Vênulas/ultraestrutura
20.
Am J Surg ; 197(2): 147-54, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19185107

RESUMO

BACKGROUND: Previous work from our laboratory demonstrated the involvement of "intrinsic" mitochondrial apoptotic signaling in vascular hyperpermeability. The objective of this study was to determine if 17beta-estradiol, a known inhibitor of apoptosis, would attenuate microvascular endothelial cell hyperpermeability. METHODS: Rat lung microvascular endothelial cell monolayers were treated with 17beta-estradiol or estrogen-receptor antagonist ICI 182780 after transfection with BAK peptide (5 microg/mL). Fluorescein isothiocyanate (FITC)-albumin was used to determine the change in permeability. Mitochondrial reactive oxygen species (ROS) formation and transmembrane potential were determined using 123 dihydrorhodamine and JC-1, respectively. Cytosolic cytochrome c levels and caspase-3 activity were determined using enzyme-linked immunosorbent assay and fluorometric assay respectively. RESULTS: 17beta-estradiol (10 nm) attenuated BAK-induced hyperpermeability (P < .05), ROS formation, cytochrome c release, and caspase-3 activation. The estrogen receptor antagonist ICI 182780 blocked the protective effect of 17beta-estradiol on hyperpermeability (P < .05). CONCLUSIONS: 17beta-estradiol attenuates BAK-induced hyperpermeability in rat lung microvascular endothelial cells by way of an estrogen-receptor mediated pathway.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Células Endoteliais/efeitos dos fármacos , Estradiol/farmacologia , Doenças Vasculares/prevenção & controle , Animais , Células Cultivadas , Pulmão/irrigação sanguínea , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA