Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38278152

RESUMO

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Policitemia Vera , Humanos , Camundongos , Animais , Medula Óssea/patologia , Megacariócitos , Janus Quinase 2/genética , Policitemia Vera/genética , Policitemia Vera/patologia , Fenótipo , Fibrose , Mutação
3.
Clin Chem ; 68(5): 646-656, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35157041

RESUMO

BACKGROUND: Differential leukocyte counts are usually measured based on cellular morphology or surface marker expression. It has recently been shown that leukocyte counts can also be determined by cell-type-specific DNA methylation (DNAm). Such epigenetic leukocyte counting is applicable to small blood volumes and even frozen material, but for clinical translation, the method needs to be further refined and validated. METHODS: We further optimized and validated targeted DNAm assays for leukocyte deconvolution using 332 venous and 122 capillary blood samples from healthy donors. In addition, we tested 36 samples from ring trials and venous blood from 266 patients diagnosed with different hematological diseases. Deconvolution of cell types was determined with various models using DNAm values obtained by pyrosequencing or digital droplet PCR (ddPCR). RESULTS: Relative leukocyte quantification correlated with conventional blood counts for granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), natural killer cells, and monocytes with pyrosequencing (r = 0.84; r = 0.82; r = 0.58; r = 0.50; r = 0.70; r = 0.61; and r = 0.59, respectively) and ddPCR measurements (r = 0.65; r = 0.79; r = 0.56; r = 0.57; r = 0.75; r = 0.49; and r = 0.46, respectively). In some patients, particularly with hematopoietic malignancies, we observed outliers in epigenetic leukocyte counts, which could be discerned if relative proportions of leukocyte subsets did not sum up to 100%. Furthermore, absolute quantification was obtained by spiking blood samples with a reference plasmid of known copy number. CONCLUSIONS: Targeted DNAm analysis by pyrosequencing or ddPCR is a valid alternative to quantify leukocyte subsets, but some assays require further optimization.


Assuntos
Metilação de DNA , Epigenômica , Granulócitos , Humanos , Contagem de Leucócitos , Leucócitos
4.
Clin Epigenetics ; 12(1): 125, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819411

RESUMO

BACKGROUND: Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS: In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION: Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.


Assuntos
Anemia Aplástica/sangue , Anemia Aplástica/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/sangue , Proteínas de Ligação a DNA/genética , Disceratose Congênita/sangue , Disceratose Congênita/genética , Histona Metiltransferases/sangue , Histona Metiltransferases/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Fenótipo , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA