Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Oral Dis ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501196

RESUMO

OBJECTIVES: To investigate the role of Keratinocyte Differentiation Factor 1 (KDF1) in ectodermal dysplasia (ED) and nonsyndromic tooth agenesis (NSTA) and perform a literature review. METHODS: Genome sequencing was used to identify genetic variants in a Thai, NSTA proband and validated through Sanger sequencing. Pathogenicity was assessed using ACMG guidelines, MetaRNN and AlphaMissense. A comprehensive review of KDF1/NSTA cases informed genotype-phenotype analysis of the proband. RESULTS: The proband revealed multiple missing teeth, caries and extensive periodontal disease. Deep phenotyping showed no signs of ED beyond tooth agenesis. The identified novel KDF1 variant, p.Ile243Leu, was classified as 'likely pathogenic' by ACMG and predicted as 'detrimental' by MetaRNN and AlphaMissense analyses. A total of 14 reviewed KDF1 cases revealed ED-associated variants (3 variants in 8 patients) clustering in the region of amino acids 251-275, within the DUF4656 domain, while NSTA-causing variants (4 variants in 6 patients) were typically found in amino- or carboxy-termini to this region. KDF1/NSTA cases exhibited an average of 15 missing teeth, with a higher prevalence in the mandible. CONCLUSION: This study identifies a novel KDF1 variant-related NSTA in Thai people. The genotype-phenotype correlates suggest a distinctive pattern and tooth agenesis of KDF1-related NSTA.

3.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650945

RESUMO

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Mutação , Proteínas do Esmalte Dentário/genética , Fósforo , Minerais , Carbono
4.
Clin Oral Investig ; 27(10): 5827-5839, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548766

RESUMO

OBJECTIVE: Skeletal dysplasia (SD) comprises more than 450 separate disorders. We hypothesized that their dental features would be distinctive and investigated the tooth characteristics of four patients with different SDs. MATERIAL AND METHODS: Four SD patients with molecularly confirmed diagnoses, Pt-1 acromicric dysplasia, Pt-2 hypophosphatasia and hypochondroplasia, Pt-3 cleidocranial dysplasia, and Pt-4 achondroplasia, were recruited. A tooth from each patient was evaluated for mineral density (micro-computerized tomography), surface roughness (surface profilometer), microhardness, mineral contents (energy-dispersive X-ray), and ultrastructure (scanning electron microscopy and histology), and compared with three tooth-type matched controls. RESULTS: Pt-1 and Pt-3 had several unerupted teeth. Pt-2 had an intact-root-exfoliated tooth at 2 years old. The lingual surfaces of the patients' teeth were significantly smoother, while their buccal surfaces were rougher, than controls, except for Pt-1's buccal surface. The patients' teeth exhibited deep grooves around the enamel prisms and rough intertubular dentin. Pt-3 demonstrated a flat dentinoenamel junction and Pt-2 had an enlarged pulp, barely detectable cementum layer, and ill-defined cemento-dentinal junction. Reduced microhardnesses in enamel, dentin, and both layers were observed in Pt-3, Pt-4, and Pt-1, respectively. Pt-1 showed reduced Ca/P ratio in dentin, while both enamel and dentin of Pt-2 and Pt-3 showed reduced Ca/P ratio. CONCLUSION: Each SD has distinctive dental characteristics with changes in surface roughness, ultrastructure, and mineral composition of dental hard tissues. CLINICAL RELEVANCE: In this era of precision dentistry, identifying the specific potential dental problems for each patient with SD would help personalize dental management guidelines.

5.
Sci Rep ; 13(1): 12202, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500953

RESUMO

Cleidocranial dysplasia (CCD) is a genetic disorder caused by mutations in the RUNX2 gene, affecting bone and teeth development. Previous studies focused on mutations in the RUNX2 RHD domain, with limited investigation of mutations in the C-terminal domain. This study aimed to investigate the functional consequences of C-terminal mutations in RUNX2. Eight mutations were analyzed, and their effects on transactivation activity, protein expression, subcellular localization, and osteogenic potential were studied. Truncating mutations in the PST region and a missense mutation in the NMTS region resulted in increased transactivation activity, while missense mutations in the PST showed activity comparable to the control. Truncating mutations produced truncated proteins, while missense mutations produced normal-sized proteins. Mutant proteins were mislocalized, with six mutant proteins detected in both the nucleus and cytoplasm. CCD patient bone cells exhibited mislocalization of RUNX2, similar to the generated mutant. Mislocalization of RUNX2 and reduced expression of downstream genes were observed in MSCs from a CCD patient with the p.Ser247Valfs*3 mutation, leading to compromised osteogenic potential. This study provides insight into the functional consequences of C-terminal mutations in RUNX2, including reduced expression, mislocalization, and aberrant transactivation of downstream genes, contributing to the compromised osteogenic potential observed in CCD.


Assuntos
Displasia Cleidocraniana , Subunidade alfa 1 de Fator de Ligação ao Core , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Mutação , Mutação de Sentido Incorreto , Displasia Cleidocraniana/genética
6.
Oral Dis ; 29(2): 735-746, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34558757

RESUMO

OBJECTIVE: To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS: Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS: A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS: PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/genética , Diferenciação Celular/genética , Tecido Adiposo , Osteogênese/genética , Polpa Dentária , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética , Células Cultivadas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia
7.
J Appl Oral Sci ; 30: e20220028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674542

RESUMO

OBJECTIVES: Cleidocranial dysplasia (CCD) is a skeletal disorder affecting cranial sutures, teeth, and clavicles, and is associated with the RUNX2 mutations. Although numerous patients have been described, a direct genotype-phenotype correlation for RUNX2 has been difficult to establish. Further cases must be studied to understand the clinical and genetic spectra of CCD. To characterize detailed phenotypes and identify variants causing CCD in five unrelated patients and their family members. METHODOLOGY: Clinical and radiographic examinations were performed. Genetic variants were identified by exome and Sanger sequencing, data were analyzed by bioinformatics tools. RESULTS: Three cases were sporadic and two were familial. Exome sequencing successfully detected the heterozygous pathogenic RUNX2 variants in all affected individuals. Three were novel, comprising a frameshift c.739delA (p.(Ser247Valfs*)) in exon 6 (Patient-1), a nonsense c.901C>T (p.(Gln301*)) in exon 7 (Patient-2 and affected mother), and a nonsense c.1081C>T (p.(Gln361*)) in exon 8 (Patient-3). Two previously reported variants were missense: the c.673C>T (p.(Arg225Trp)) (Patient-4) and c.674G>A (p.(Arg225Gln)) (Patient-5) in exon 5 within the Runt homology domain. Patient-1, Patient-2, and Patient-4 with permanent dentition had thirty, nineteen, and twenty unerupted teeth, respectively; whereas Patient-3 and Patient-5, with deciduous dentition, had normally developed teeth. All patients exhibited typical CCD features, but the following uncommon/unreported phenotypes were observed: left fourth ray brachymetatarsia (Patient-1), normal clavicles (Patient-2 and affected mother), phalangeal malformations (Patient-3), and normal primary dentition (Patient-3, Patient-5). CONCLUSIONS: The study shows that exome sequencing is effective to detect mutation across ethnics. The two p.Arg225 variants confirm that the Runt homology domain is vital for RUNX2 function. Here, we report a new CCD feature, unilateral brachymetatarsia, and three novel truncating variants, expanding the phenotypic and genotypic spectra of RUNX2 , as well as show that the CCD patients can have normal deciduous teeth, but must be monitored for permanent teeth anomalies.


Assuntos
Displasia Cleidocraniana , Subunidade alfa 1 de Fator de Ligação ao Core , Displasia Cleidocraniana/complicações , Displasia Cleidocraniana/diagnóstico por imagem , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Fenótipo
8.
J. appl. oral sci ; 30: e20220028, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1386010

RESUMO

Abstract Cleidocranial dysplasia (CCD) is a skeletal disorder affecting cranial sutures, teeth, and clavicles, and is associated with the RUNX2 mutations. Although numerous patients have been described, a direct genotype-phenotype correlation for RUNX2 has been difficult to establish. Further cases must be studied to understand the clinical and genetic spectra of CCD. Objectives To characterize detailed phenotypes and identify variants causing CCD in five unrelated patients and their family members. Methodology Clinical and radiographic examinations were performed. Genetic variants were identified by exome and Sanger sequencing, data were analyzed by bioinformatics tools. Results Three cases were sporadic and two were familial. Exome sequencing successfully detected the heterozygous pathogenic RUNX2 variants in all affected individuals. Three were novel, comprising a frameshift c.739delA (p.(Ser247Valfs*)) in exon 6 (Patient-1), a nonsense c.901C>T (p.(Gln301*)) in exon 7 (Patient-2 and affected mother), and a nonsense c.1081C>T (p.(Gln361*)) in exon 8 (Patient-3). Two previously reported variants were missense: the c.673C>T (p.(Arg225Trp)) (Patient-4) and c.674G>A (p.(Arg225Gln)) (Patient-5) in exon 5 within the Runt homology domain. Patient-1, Patient-2, and Patient-4 with permanent dentition had thirty, nineteen, and twenty unerupted teeth, respectively; whereas Patient-3 and Patient-5, with deciduous dentition, had normally developed teeth. All patients exhibited typical CCD features, but the following uncommon/unreported phenotypes were observed: left fourth ray brachymetatarsia (Patient-1), normal clavicles (Patient-2 and affected mother), phalangeal malformations (Patient-3), and normal primary dentition (Patient-3, Patient-5). Conclusions The study shows that exome sequencing is effective to detect mutation across ethnics. The two p.Arg225 variants confirm that the Runt homology domain is vital for RUNX2 function. Here, we report a new CCD feature, unilateral brachymetatarsia, and three novel truncating variants, expanding the phenotypic and genotypic spectra of RUNX2 , as well as show that the CCD patients can have normal deciduous teeth, but must be monitored for permanent teeth anomalies.

9.
J Transl Med ; 19(1): 114, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743732

RESUMO

The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.


Assuntos
Metaloendopeptidases , Fatores de Transcrição , Humanos , Metaloendopeptidases/genética , Mutação de Sentido Incorreto , Linhagem , Peptídeo Hidrolases
10.
Artigo em Inglês | MEDLINE | ID: mdl-33737018

RESUMO

OBJECTIVE: Dentinogenesis imperfecta (DI) requires dental treatment. This study investigated the characteristics of DI teeth associated with osteogenesis imperfecta (OI) and COL1A2 mutations. STUDY DESIGN: Whole exome and Sanger sequencing were performed. Three primary teeth (called "OIDI teeth") obtained from 3 unrelated COL1A2 patients were investigated and compared with 9 control teeth from age-matched healthy individuals using colorimetry, micro-computed tomography, Knoop microhardness, energy dispersive X-ray spectroscopy, scanning electron microscopy, and histology. RESULTS: All patients were identified with heterozygous glycine substitutions in COL1A2. The COL1A2 mutations, c.1531G>T and c.2027G>T, were de novo, whereas c.3106G>C was inherited. OIDI1, 2, and 3 teeth had a substantial decrease in dentin microhardness and lightness. OIDI2 enamel microhardness was significantly reduced, whereas OIDI1 and 3 had enamel microhardness comparable to that of control individuals. The OIDI1 pulp cavity was large; OIDI2 was narrow; and OIDI3 was obliterated. OIDI1 and 3 had significantly higher carbon levels than those in control individuals. Numerous ectopic calcified masses, sparse and obstructed dentinal tubules, dentin holes, and collagen disorientation were observed. CONCLUSIONS: OIDI teeth had reduced lightness and variable pulp morphology. Weak dentin, mineral disproportion, and abnormal ultrastructure could contribute to the brittleness of OIDI teeth and adhesive restoration failure. Here, we expand the phenotypic spectrum of COL1A2 mutations and raise awareness among dentists seeing patients with OI.


Assuntos
Dentinogênese Imperfeita , Osteogênese Imperfeita , Colágeno Tipo I/genética , Dentina , Dentinogênese Imperfeita/genética , Humanos , Mutação , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Microtomografia por Raio-X
11.
Mol Genet Genomics ; 295(4): 923-931, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246227

RESUMO

Amelogenesis imperfecta type IG (AI1G) is caused by mutations in FAM20A. Genotypic and phenotypic features of AI1G are diverse and their full spectra remain to be characterized. The aim of this study was to identify and summarize variants in FAM20A in a broad population of patients with AI1G. We identified a Thai female (Pt-1) and a Saudi male (Pt-2) affected with AI1G. Both had hypoplastic enamel, gingival hyperplasia, and intrapulpal calcification. Pt-1 also had rapidly progressive embedding of unerupted teeth, early eruption of permanent teeth, and spontaneous dental infection. Uniquely, Pt-2 had all permanent teeth erupted which was uncommon in AI1G patients. Whole exome sequencing (WES) identified that Pt-1 was heterozygous for FAM20A, c.758A > G (p.Tyr253Cys), inherited from her father. The mutation on maternal allele was not detected by WES. Pt-2 possessed compound heterozygous mutations, c.1248dupG (p.Phe417Valfs*7); c.1081C > T (p.Arg361Cys) in FAM20A. Array comparative genomic hybridization (aCGH), cDNA sequencing, and whole genome sequencing successfully identified 7531 bp deletion on Pt-1's maternal allele. This was the largest FAM20A deletion ever found. A review of all 70 patients from 50 independent families with AI1G (including two families in this study) showed that the penetrance of hypoplastic enamel and gingival hyperplasia was complete. Unerupted permanent teeth were found in all 70 patients except Pt-2. Exons 1 and 11 were mutation-prone. Most mutations were frameshift. Certain variants showed founder effect. To conclude, this study reviews and expands phenotypic and genotypic spectra of AI1G. A large deletion missed by WES can be detected by WGS. Hypoplastic enamel, gingival hyperplasia, and unerupted permanent teeth prompt genetic testing of FAM20A. Screening of nephrocalcinosis, early removal of embedded teeth, and monitoring of dental infection are recommended.


Assuntos
Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/genética , Nefrocalcinose/genética , Deleção de Sequência/genética , Adolescente , Adulto , Amelogênese Imperfeita/patologia , Criança , Hibridização Genômica Comparativa , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Genótipo , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação/genética , Nefrocalcinose/patologia , Linhagem , Fenótipo
12.
Mol Genet Genomics ; 294(3): 773-787, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30887145

RESUMO

The latent transforming growth factor-beta-binding protein 3 (LTBP3), encoding extracellular matrix proteins, plays a role in skeletal formation. Mutations in LTBP3 have been associated with various types of skeletal dysplasia. We aimed to characterize clinical and molecular features of more patients with mutations in the gene, which may help suggest genotype-phenotype correlation. The first two East Asian patients with short stature, heart defects, and orodental anomalies having LTBP3 mutations were identified. Whole exome and Sanger sequencing revealed that the one with a novel heterozygous missense (c.2017G>T, p.Gly673Cys) mutation in LTBP3 had clinical features consistent with acromicric dysplasia (ACMICD). The variant was located in the highly conserved EGF-like calcium-binding domain adjacent to the single reported LTBP3 variant associated with ACMICD. This finding supports that LTBP3 is a disease gene for ACMICD. Another patient with a novel homozygous splice site acceptor (c.1721-2A>G) mutation in LTBP3 was affected with dental anomalies and short stature (DASS). Previously undescribed orodental features included multiple unerupted teeth, high-arched palate, and microstomia found in our patient with ACMICD, and extensive dental infection, condensing osteitis, and deviated alveolar bone formation in our patient with DASS. Our results and comprehensive reviews suggest a genotype-phenotype correlation: biallelic loss-of-function mutations cause DASS, monoallelic missense gain-of-function mutations in the EGF-like domain cause ACMICD, and monoallelic missense gain-of-function mutations with more drastic effects on the protein functions cause geleophysic dysplasia (GPHYSD3). In summary, we expand the phenotypic and genotypic spectra of LTBP3-related disorders, support that LTBP3 is a disease gene for ACMICD, and propose the genotype-phenotype correlation of LTBP3 mutations.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Estudos de Associação Genética/métodos , Proteínas de Ligação a TGF-beta Latente/genética , Deformidades Congênitas dos Membros/genética , Mutação , Anormalidades Dentárias/genética , Adolescente , Sequência de Aminoácidos , Criança , Nanismo/genética , Feminino , Humanos , Masculino , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
13.
Int J Biol Sci ; 14(4): 381-389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725259

RESUMO

Kabuki syndrome is a rare genetic disorder characterized by distinct dysmorphic facial features, intellectual disability, and multiple developmental abnormalities. Despite more than 350 documented cases, the oro-dental spectrum associated with kabuki syndrome and expression of KMT2D (histone-lysine N-methyltransferase 2D) or KDM6A (lysine-specific demethylase 6A) genes in tooth development have not been well defined. Here, we report seven unrelated Thai patients with Kabuki syndrome having congenital absence of teeth, malocclusion, high-arched palate, micrognathia, and deviated tooth shape and size. Exome sequencing successfully identified that six patients were heterozygous for mutations in KMT2D, and one in KDM6A. Six were novel mutations, of which five were in KMT2D and one in KDM6A. They were truncating mutations including four frameshift deletions and two nonsense mutations. The predicted non-functional KMT2D and KDM6A proteins are expected to cause disease by haploinsufficiency. Our study expands oro-dental, medical, and mutational spectra associated with Kabuki syndrome. We also demonstrate for the first time that KMT2D and KDM6A are expressed in the dental epithelium of human tooth germs.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/genética , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Anormalidades Dentárias/patologia , Germe de Dente/metabolismo , Doenças Vestibulares/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas de Ligação a DNA/metabolismo , Face/patologia , Mutação da Fase de Leitura , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Histona Desmetilases/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Anormalidades Dentárias/genética , Anormalidades Dentárias/metabolismo , Doenças Vestibulares/metabolismo , Doenças Vestibulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA