Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Neurobiol Dis ; 34(2): 199-211, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19217433

RESUMO

The expression of the methylated DNA-binding protein MeCP2 increases during neuronal development, which suggests that this epigenetic factor is crucial for neuronal terminal differentiation. We evaluated dendritic and axonal development in embryonic day-18 hippocampal neurons in culture by measuring total length and counting branch point numbers at 4 days in vitro, well before synapse formation. Pyramidal neurons transfected with a plasmid encoding a small hairpin RNA (shRNA) to knockdown endogenous Mecp2 had shorter dendrites than control untransfected neurons, without detectable changes in axonal morphology. On the other hand, overexpression of wildtype (wt) human MECP2 increased dendritic branching, in addition to axonal branching and length. Consistent with reduced neuronal growth and complexity in Rett syndrome (RTT) brains, overexpression of human MECP2 carrying missense mutations common in RTT individuals (R106W or T158M) reduced dendritic and axonal length. One of the targets of MeCP2 transcriptional control is the Bdnf gene. Indeed, endogenous Mecp2 knockdown increased the intracellular levels of BDNF protein compared to untransfected neurons, suggesting that MeCP2 represses Bdnf transcription. Surprisingly, overexpression of wt MECP2 also increased BDNF levels, while overexpression of RTT-associated MECP2 mutants failed to affect BDNF levels. The extracellular BDNF scavenger TrkB-Fc prevented dendritic overgrowth in wt MECP2-overexpressing neurons, while overexpression of the Bdnf gene reverted the dendritic atrophy caused by Mecp2-knockdown. However, this effect was only partial, since Bdnf increased dendritic length only to control levels in mutant MECP2-overexpressing neurons, but not as much as in Bdnf-transfected cells. Our results demonstrate that MeCP2 plays varied roles in dendritic and axonal development during neuronal terminal differentiation, and that some of these effects are mediated by autocrine actions of BDNF.


Assuntos
Atrofia/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Hipocampo/anormalidades , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação/genética , Animais , Atrofia/genética , Comunicação Autócrina/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular/genética , Células Cultivadas , Dendritos/patologia , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/fisiopatologia , Neurogênese/genética , Células PC12 , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transfecção/métodos
2.
J Biol Chem ; 277(51): 49296-303, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12377772

RESUMO

Syndecan-4 is a transmembrane heparan sulfate proteoglycan that can regulate cell-matrix interactions and is enriched in focal adhesions. Its cytoplasmic domain contains a central region unlike that of any other vertebrate or invertebrate syndecan core protein with a cationic motif that binds inositol phospholipids. In turn, lipid binding stabilizes the syndecan in oligomeric form, with subsequent binding and activation of protein kinase C. The specificity of phospholipid binding and its potential regulation are investigated here. Highest affinity of the syndecan-4 cytoplasmic domain was seen with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5P)(2)) and phosphatidylinositol 4-phosphate, and both promoted syndecan-4 oligomerization. Affinity was much reduced for 3-phosphorylated inositides while no binding of diacylglycerol was detected. Syndecan-2 cytoplasmic domain had negligible affinity for any lipid examined. Inositol hexakisphosphate, but not inositol tetrakisphosphate, also had high affinity for the syndecan-4 cytoplasmic domain and could compete effectively with PtdIns(4,5)P(2). Since inositol hexaphosphate binding to syndecan-4 does not promote oligomer formation, it is a potential down-regulator of syndecan-4 signaling. Similarly, phosphorylation of serine 183 in syndecan-4 cytoplasmic domain reduced PtdIns(4,5)P(2) binding affinity by over 100-fold, although interaction could still be detected by nuclear magnetic resonance spectroscopy. Only protein kinase Calpha was up-regulated in activity by the combination of syndecan-4 and PtdIns(4,5)P(2), with all other isoforms tested showing minimal response. This is consistent with the codistribution of syndecan-4 with the alpha isoform of protein kinase C in focal adhesions.


Assuntos
Inositol/metabolismo , Glicoproteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteoglicanas/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Adesão Celular , Células Cultivadas , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Isoenzimas/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Dados de Sequência Molecular , Fosfatidilinositol 4,5-Difosfato , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Estrutura Terciária de Proteína , Ratos , Serina/metabolismo , Transdução de Sinais , Sindecana-4 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA