Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 306: 120579, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746578

RESUMO

Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of ß-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Humanos , Porfirinas/farmacologia , Antineoplásicos/farmacologia , Gencitabina , Nanopartículas/química , beta-Ciclodextrinas/química , Portadores de Fármacos/química
2.
Cancers (Basel) ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010996

RESUMO

In a course of metabolic experiments, we determined that the addition of δ-aminolevulinic acid (5-ALA) to a panel of glioblastoma multiforme (GBM) cells caused a steep reduction in their glycolytic activity. This reduction was accompanied by a decrease in adenosine triphosphate (ATP) production from glycolysis. These results suggested that 5-ALA is an inhibitor of glycolysis; due to the structural similarity of 5-ALA to the established lactate dehydrogenase (LDH) inhibitors oxamate (OXM) and tartronate (TART), we initially investigated LDH inhibition by 5-ALA in silico. The modelling revealed that 5-ALA could indeed be a competitive inhibitor of LDH but not a substrate. These theoretical findings were corroborated by enzymatic and cell lysate assays in which 5-ALA was found to confer a potent LDH inhibition comparable to that of OXM and TART. We subsequently evaluated the effect of 5-ALA-induced glycolysis inhibition on the viability of GBM cells with diverse metabolic phenotypes. In the Warburg-type cell lines Ln18 and U87, incubation with 5-ALA elicited profound and irreversible cell death (90-98%) at 10 mM after merely 24 h. In T98G, however, which exhibited both high respiratory and glycolytic rates, LD95 was achieved after 72 h of incubation with 20 mM 5-ALA. We additionally examined the production of the 5-ALA photosensitive metadrug protoporphyrin IX (PpIX), with and without prior LDH inhibition by TART. These studies revealed that ~20% of the 5-ALA taken up by the cells was engaged in LDH inhibition. We subsequently performed 5-ALA photodynamic therapy (PDT) on Ln18 GBM cells, again with and without prior LDH inhibition with TART, and found a PDT outcome enhancement of ~15% upon LDH pre-inhibition. We expect our findings to have a profound impact on contemporary oncology, particularly for the treatment of otherwise incurable brain cancers such as GBM, where the specific accumulation of 5-ALA is very high compared to the surrounding normal tissue.

3.
Neoplasia ; 26: 100779, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247801

RESUMO

BACKGROUND: Host immune response is a critical component in tumorigenesis and immune escape. Radiation is widely used for glioblastoma (GBM) and can induce marked tissue inflammation and substantially alter host immune response. However, the role of myeloperoxidase (MPO), a key enzyme in inflammation and host immune response, in tumorigenesis after radiotherapy is unclear. In this study, we aimed to determine how post-radiation MPO activity influences GBM and outcome. METHODS: We injected C57BL/6J or MPO-knockout mice with 005 mouse GBM stem cells intracranially. To observe MPO's effects on post-radiation tumor progression, we then irradiated the head with 10 Gy unfractionated and treated the mice with a specific MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH), or vehicle as control. We performed semi-quantitative longitudinal molecular MRI, enzymatic assays and flow cytometry to assess changes in inflammatory response and tumor size, and tracked survival. We also performed cell culture experiments in murine and human GBM cells to determine the effect of MPO on these cells. RESULTS: Brain irradiation increased the number of monocytes/macrophages and neutrophils, and boosted MPO activity by ten-fold in the glioma microenvironment. However, MPO inhibition dampened radiation-induced inflammation, demonstrating decreased MPO-specific signal on molecular MRI and attenuated neutrophil and inflammatory monocyte/macrophage recruitment to the glioma. Compared to saline-treated mice, both ABAH-treated and MPO-knockout mice had accelerated tumor growth and reduced survival. We further confirmed that MPO decreased tumor cell viability and proliferation in cell cultures. CONCLUSION: Local radiation to the brain initiated an acute systemic inflammatory response with increased MPO-carrying cells both in the periphery and the GBM, resulting in increased MPO activity in the tumor microenvironment. Inhibition or absence of MPO activity increased tumor growth and decreased host survival, revealing that elevated MPO activity after radiation has an anti-tumor role.


Assuntos
Glioblastoma , Peroxidase , Animais , Encéfalo , Glioblastoma/genética , Glioblastoma/radioterapia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Microambiente Tumoral
4.
Cancer Rep (Hoboken) ; 5(12): e1278, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-32737955

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a minimally invasive, clinically approved therapy with numerous advantages over other mainstream cancer therapies. 5-aminolevulinic acid (5-ALA)-PDT is of particular interest, as it uses the photosensitiser PpIX, naturally produced in the heme pathway, following 5-ALA administration. Even though 5-ALA-PDT shows high specificity to cancers, differences in treatment outcomes call for predictive biomarkers to better stratify patients and to also diversify 5-ALA-PDT based on each cancer's phenotypic and genotypic individualities. AIMS: The present study seeks to highlight key biomarkers that may predict treatment outcome and simultaneously be exploited to overcome cancer-specific resistances to 5-ALA-PDT. METHODS AND RESULTS: We submitted two glioblastoma (T98G and U87) and three breast cancer (MCF7, MDA-MB-231, and T47D) cell lines to 5-ALA-PDT. Glioblastoma cells were the most resilient to 5-ALA-PDT, while intracellular production of 5-ALA-derived protoporphyrin IX (PpIX) could not account for the recorded PDT responses. We identified the levels of expression of ABCG2 transporters, ferrochelatase (FECH), and heme oxygenase (HO-1) as predictive biomarkers for 5-ALA-PDT. GPX4 and GSTP1 expression vs intracellular glutathione (GSH) levels also showed potential as PDT biomarkers. For T98G cells, inhibition of ABCG2, FECH, HO-1, and/or intracellular GSH depletion led to profound PDT enhancement. Inhibition of ABCG2 in U87 cells was the only synergistic adjuvant to 5-ALA-PDT, rendering the otherwise resistant cell line fully responsive to 5-ALA-PDT. ABCG2 or FECH inhibition significantly enhanced 5-ALA-PDT-induced MCF7 cytotoxicity, while for MDA-MB-231, ABCG2 inhibition and intracellular GSH depletion conferred profound synergies. FECH inhibition was the only synergism to ALA-PDT for the most susceptible among the cell lines, T47D cells. CONCLUSION: This study demonstrates the heterogeneity in the cellular response to 5-ALA-PDT and identifies biomarkers that may be used to predict treatment outcome. The study also provides preliminary findings on the potential of inhibiting specific molecular targets to overcome inherent resistances to 5-ALA-PDT.


Assuntos
Glioblastoma , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacologia , Fotoquimioterapia/métodos , Glioblastoma/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Biomarcadores
5.
Front Bioeng Biotechnol ; 8: 1027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042960

RESUMO

Hybrid porous nanoscale metal organic frameworks (nanoMOFs) made of iron trimesate are attracting increasing interest as drug carriers, due to their high drug loading capacity, biodegradability, and biocompatibility. NanoMOF surface modification to prevent clearance by the innate immune system remains still challenging in reason of their high porosity and biodegradable character. Herein, FDA-approved lipids and poly(ethylene glycol) (PEG)-lipid conjugates were used to engineer the surface of nanoMOFs by a rapid and convenient solvent-exchange deposition method. The resulting lipid-coated nanoMOFs were extensively characterized. For the first time, we show that nanoMOF surface modification with lipids affords a better control over drug release and their degradation in biological media. Moreover, when loaded with the anticancer drug Gem-MP (Gemcitabine-monophosphate), iron trimesate nanoMOFs acted as "Trojan horses" carrying the drug inside cancer cells to eradicate them. Most interestingly, the PEG-coated nanoMOFs escaped the capture by macrophages. In a nutshell, versatile PEG-based lipid shells control cell interactions and open perspectives for drug targeting.

6.
Photochem Photobiol ; 96(3): 699-707, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32125700

RESUMO

In the present work, we study the photodynamic action of cercosporin (cerco), a naturally occurring photosensitizer, on human cancer multicellular spheroids. U87 spheroids exhibit double the uptake of cerco than T47D and T98G spheroids as shown by flow cytometry on the single cell level. Moreover, cerco is efficiently internalized by cells throughout the spheroid as shown by confocal microscopy, for all three cell lines. Despite their higher cerco uptake, U87 spheroids show the least vulnerability to cerco-PDT, in contrast to the other two cell lines (T47D and T98G). While 300 µm diameter spheroids consistently shrink and become necrotic after cerco PDT, bigger spheroids (>500 µm) start to regrow following blue-light PDT and exhibit high viability. Cerco-PDT was found to be effective on bigger spheroids reaching 1mm in diameter especially under longer exposure to yellow light (~590 nm). In terms of metabolism, T47D and T98G undergo a complete bioenergetic collapse (respiration and glycolysis) as a result of cerco-PDT. U87 spheroids also experienced a respiratory collapse following cerco-PDT, but retained half their glycolytic activity.


Assuntos
Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Necrose/tratamento farmacológico , Perileno/farmacologia , Esferoides Celulares/metabolismo
7.
J Clin Med ; 9(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075165

RESUMO

Photochemical internalisation (PCI) is a unique intervention which involves the release of endocytosed macromolecules into the cytoplasmic matrix. PCI is based on the use of photosensitizers placed in endocytic vesicles that, following light activation, lead to rupture of the endocytic vesicles and the release of the macromolecules into the cytoplasmic matrix. This technology has been shown to improve the biological activity of a number of macromolecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus and oligonucleotides and certain chemotherapeutics, such as bleomycin. This new intervention has also been found appealing for intracellular delivery of drugs incorporated into nanocarriers and for cancer vaccination. PCI is currently being evaluated in clinical trials. Data from the first-in-human phase I clinical trial as well as an update on the development of the PCI technology towards clinical practice is presented here.

8.
NPJ Breast Cancer ; 5: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993194

RESUMO

Currently the greatest challenge in oncology is the lack of homogeneity of the lesions where different cell components respond differently to treatment. There is growing consensus that monotherapies are insufficient to eradicate the disease and there is an unmet need for more potent combinatorial treatments. We have previously shown that hypericin photodynamic therapy (HYP-PDT) triggers electron transport chain (ETC) inhibition in cell mitochondria. We have also shown that tamoxifen (TAM) enhances cytotoxicity in cells with high respiration, when combined with ETC inhibitors. Herein we introduce a synergistic treatment based on TAM chemotherapy and HYP-PDT. We tested this novel combinatorial treatment (HYPERTAM) in two metabolically different breast cancer cell lines, the triple-negative MDA-MB-231 and the estrogen-receptor-positive MCF7, the former being quite sensitive to HYP-PDT while the latter very responsive to TAM treatment. In addition, we investigated the mode of death, effect of lipid peroxidation, and the effect on cell metabolism. The results were quite astounding. HYPERTAM exhibited over 90% cytotoxicity in both cell lines. This cytotoxicity was in the form of both necrosis and autophagy, while high levels of lipid peroxidation were observed in both cell lines. We, consequently, translated our research to an in vivo pilot study encompassing the MDA-MB-231 and MCF7 tumor models in NOD SCID-γ immunocompromised mice. Both treatment cohorts responded very positively to HYPERTRAM, which significantly prolonged mice survival. HYPERTAM is a potent, synergistic modality, which may lay the foundations for a novel, composite anticancer treatment, effective in diverse tumor types.

9.
EBioMedicine ; 40: 106-117, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30665853

RESUMO

BACKGROUND: Adoptive T-cell transfer of therapeutic TCR holds great promise to specifically kill cancer cells, but relies on modifying the patient's own T cells ex vivo before injection. The manufacturing of T cells in a tailor-made setting is a long and expensive process which could be resolved by the use of universal cells. Currently, only the Natural Killer (NK) cell line NK-92 is FDA approved for universal use. In order to expand their recognition ability, they were equipped with Chimeric Antigen Receptors (CARs). However, unlike CARs, T-cell receptors (TCRs) can recognize all cellular proteins, which expand NK-92 recognition to the whole proteome. METHODS: We herein genetically engineered NK-92 to express the CD3 signaling complex, and showed that it rendered them able to express a functional TCR. Functional assays and in vivo efficacy were used to validate these cells. FINDINGS: This is the first demonstration that a non-T cell can exploit TCRs. This TCR-redirected cell line, termed TCR-NK-92, mimicked primary T cells phenotypically, metabolically and functionally, but retained its NK cell effector functions. Our results demonstrate a unique manner to indefinitely produce TCR-redirected lymphocytes at lower cost and with similar therapeutic efficacy as redirected T cells. INTERPRETATION: These results suggest that an NK cell line could be the basis for an off-the-shelf TCR-based cancer immunotherapy solution. FUND: This work was supported by the Research Council of Norway (#254817), South-Eastern Norway Regional Health Authority (#14/00500-79), by OUS-Radiumhospitalet (Gene Therapy program) and the department of Oncology at the University of Lausanne.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Respiração Celular , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Metabolismo Energético , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Mitocôndrias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Photochem Photobiol ; 95(1): 387-396, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107033

RESUMO

Cercosporin is a naturally occurring perylenequinone. Although other perylenequinones have been extensively studied as photosensitizers in photodynamic therapy of cancer (PDT), cercosporin has been studied in this light only within the remits of phytopathology. Herein, we investigated the photocytotoxicity of cercosporin against two glioblastoma multiforme (T98G and U87) and one breast adenocarcinoma (MCF7) human cell lines. Cercosporin was found to be a potent singlet oxygen producer upon 532 nm excitation, while its cell loading was similar for MCF7 and U87, but approximately threefold higher for T98G cells. The subcellular localization of cercosporin was in all cases in both mitochondria and the endoplasmic reticulum. Light irradiation of cercosporin-incubated cells around 450 nm showed that T98G cells were more susceptible to cercosporin PDT, mainly due to their higher cercosporin uptake. Metabolic studies before and 1 h following cercosporin PDT showed that cercosporin PDT instigated a bioenergetic collapse in both the respiratory and glycolytic activities of all cell lines. In the dark, cercosporin exhibited a synergistic cytotoxicity with copper only in the most respiratory cell lines (MCF7 and T98G). Cercosporin is a potent photosensitizer, but with a short activation wavelength, mostly suitable for superficial PDT treatments, especially when it is necessary to avoid perforations.


Assuntos
Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Humanos , Perileno/metabolismo , Perileno/farmacologia , Fármacos Fotossensibilizantes/metabolismo , Proteína Quinase C/metabolismo , Frações Subcelulares/metabolismo
11.
J Hematol Oncol ; 11(1): 23, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458389

RESUMO

BACKGROUND: Although chemo-immunotherapy has led to an improved overall survival for most B-cell lymphoma types, relapsed and refractory disease remains a challenge. The malaria drug artesunate has previously been identified as a growth suppressor in some cancer types and was tested as a new treatment option in B-cell lymphoma. METHODS: We included artesunate in a cancer sensitivity drug screen in B lymphoma cell lines. The preclinical properties of artesunate was tested as single agent in vitro in 18 B-cell lymphoma cell lines representing different histologies and in vivo in an aggressive B-cell lymphoma xenograft model, using NSG mice. Artesunate-treated B lymphoma cell lines were analyzed by functional assays, gene expression profiling, and protein expression to identify the mechanism of action. RESULTS: Drug screening identified artesunate as a highly potent anti-lymphoma drug. Artesunate induced potent growth suppression in most B lymphoma cells with an IC50 comparable to concentrations measured in serum from artesunate-treated malaria patients, while leaving normal B-cells unaffected. Artesunate markedly inhibited highly aggressive tumor growth in a xenograft model. Gene expression analysis identified endoplasmic reticulum (ER) stress and the unfolded protein response as the most affected pathways and artesunate-induced expression of the ER stress markers ATF-4 and DDIT3 was specifically upregulated in malignant B-cells, but not in normal B-cells. In addition, artesunate significantly suppressed the overall cell metabolism, affecting both respiration and glycolysis. CONCLUSIONS: Artesunate demonstrated potent apoptosis-inducing effects across a broad range of B-cell lymphoma cell lines in vitro, and a prominent anti-lymphoma activity in vivo, suggesting it to be a relevant drug for treatment of B-cell lymphoma.


Assuntos
Antineoplásicos/farmacologia , Artesunato/farmacologia , Linfoma de Células B/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Artesunato/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Transcriptoma/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomacromolecules ; 19(2): 315-328, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29313672

RESUMO

The low critical solution temperature phase transition (Tc) that is exhibited by thermosensitive polymers is strongly dependent on polymer concentration, pH, ionic strength, as well as the presence of specific molecules or ions in solution. Therefore, polymers with Tc values above 37 °C that are useful for hyperthermia therapy are not readily available. In the present study, temperature-sensitive hyperbranched polyethylenimine derivatives were developed through stepwise functionalization with isobutylamide groups. Although factors such as the concentration of polymer, sodium chloride, phosphate ions, and pH considerably affect the transition temperature, it was possible to obtain a hyperbranched derivative having the required Tc (38-39 °C) for the given aqueous medium required in cell experiments through careful selection of the degree of substitution. This thermosensitive derivative can encapsulate doxorubicin (DOX), a well-known anticancer agent, and was further studied as a temperature-triggered drug delivery system. Although the polymeric carrier showed no notable toxicity at temperatures either below or above the transition temperature, the thermoresponsive drug-loaded formulation exhibited increased DOX cellular uptake and improved in vitro cytotoxicity at 40 °C.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/química , Polietilenoimina/química , Temperatura de Transição , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Nanopartículas/efeitos adversos , Concentração Osmolar
13.
Photodiagnosis Photodyn Ther ; 20: 35-47, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28838761

RESUMO

The low curative response to current treatment regimens for most soft tissue sarcomas indicates a strong need for alternative treatment strategies and predictive markers for treatment outcome. PCI (photochemical internalization) is a novel treatment strategy to translocate drugs into cytosol that otherwise would have been degraded in lysosomes. Two highly geno-and phenotypically different uterine and vulvar leiomyosarcoma cell lines, MES-SA and SK-LMS-1, were treated with bleomycin (BLM) activated by PCI (PCIBLM). The MES-SA cells were much more sensitive to PCIBLM than the SK-LMS-1 cells and the treatment induced a 7-8 fold higher increase in DNA double-strand breaks at the same dose of light as measure by γH2AX staining. A 3-fold higher induction of apoptosis and stronger activation of Bax and p21 was also measured in the P53WT MES-SA cells, compared to the P53mut SK-LMS-1 cells. The basal formation of reactive oxygen species (ROS) was 3-fold higher in SK-LMS-1 cells than in the MES-SA cells and SK-LMS-1 cells expressed glutathione peroxidase 1 (GPx1) and more superoxide dismutase 2 (SOD2) than the MES-SA cells. Glutathione depletion with the glutathione synthetase inhibitor buthionine sulfoximine increased the cytotoxic effect of the photochemical treatment (PDT) most strongly in the SK-LMS-1 cells, and reduced PCIBLM-induced H2AX activation in the MES-SA cells, but not in the SK-LMS-1 cells. The results indicate PCIBLM as a potential novel treatment strategy for soft tissue sarcomas, with antioxidant enzymes, in particular GPx1, and the P53 status as potential predictive markers for response to PCIBLM.


Assuntos
Bleomicina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Sarcoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa Peroxidase/biossíntese , Humanos , Metionina/análogos & derivados , Metionina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese
14.
Redox Biol ; 12: 191-197, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28254657

RESUMO

The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT) have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT). MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4) than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1), mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH) by buthionine sulfoximine (BSO), largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU) resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glutationa/metabolismo , Perileno/análogos & derivados , Antracenos , Neoplasias da Mama/tratamento farmacológico , Butionina Sulfoximina/farmacologia , Carmustina/farmacologia , Linhagem Celular Tumoral , Feminino , Glutationa Peroxidase/metabolismo , Glutationa S-Transferase pi/metabolismo , Humanos , Células MCF-7 , Perileno/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fotoquimioterapia
15.
Nature ; 541(7637): 417-420, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077876

RESUMO

As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.


Assuntos
Autofagia , Drosophila melanogaster/citologia , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral , Aminoácidos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Transporte Biológico , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Feminino , Interleucina-6/metabolismo , Proteínas de Membrana , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
16.
ACS Chem Biol ; 11(1): 251-62, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26569462

RESUMO

Tamoxifen is not only considered a very potent chemotherapeutic adjuvant for estrogen receptor positive breast cancers but also a very good chemo-preventive drug. Recently, there has been a rising amount of evidence for a nongenomic cytotoxicity of tamoxifen, even in estrogen receptor negative cells, which has greatly confounded researchers. Clinically, the side effects of tamoxifen can be very serious, ranging from liver steatosis to cirrhosis, tumorigenesis, or onset of porphyrias. Herein, we deciphered the nongenomic, mitochondrial cytotoxicity of tamoxifen in estrogen receptor positive MCF7 versus triple-negative MDA-MB-231 cells, employing the mitochondrial complex III quinoloxidizing-center inhibitor myxothiazol. We showed a role for hydroxyl-radical-mediated lipid peroxidation, catalyzed by iron, stemming from the redox interactions of tamoxifen quinoid metabolites with complex III, resulting in Fenton-capable reduced quinones. The role of tamoxifen semiquinone species in mitochondrial toxicity was also shown together with evidence of mitochondrial DNA damage. Tamoxifen caused an overall metabolic (respiratory and glycolytic) rate decrease in the Pasteur type MCF cells, while in the Warburg type MDA-MB-231 cells the respiratory rate was not significantly affected and the glycolytiv rate was significantly boosted. The nongenomic cytotoxicity of tamoxifens was hence associated with the metabolic phenotype and redox activity of the cells, as in the present paradigm of Pasteur MCF7s versus Warburg MDA-MB-231 cells. Our present findings call for caution in the use of the drugs, especially as a chemopreventive and/or in cases of iron overload diseases.


Assuntos
Mitocôndrias/efeitos dos fármacos , Tamoxifeno/toxicidade , Antineoplásicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Microscopia Confocal , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Células Tumorais Cultivadas
17.
Photochem Photobiol ; 91(5): 1191-202, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26118404

RESUMO

A new family of Ru(II)-based photosensitizers was synthesized and systematically characterized. The ligands employed to coordinate the ruthenium metal center were the commercially available 2,2'-bipyridine and a pyridine-quinoline hybrid bearing an anthracene moiety. The complexes obtained carry either PF6- or Cl(-) counterions. These counterions determine the complexes' hydrophobic or hydrophilic character, respectively, therefore dictating their solubility in biologically related media. All photosensitizers exhibit characteristic, relatively strong and wide UV-Vis absorption spectral profiles. Their high efficiency in generating cytotoxic singlet oxygen was established (up to ΦΔ ~0.8). Moreover, the interaction of these photosensitizers with double-stranded DNA was studied fluoro- and photospectroscopically and their binding affinities were found to be of the order of 3 × 10(7)  M(-1) . All complexes are photocytotoxic to DU145 human prostate cancer cells. The highest light-induced toxicity was conferred by the photosensitizers bearing Cl(-) counterions, probably due to the looser ionic "chaperoning" of Cl(-) , in comparison to PF6-, leading to higher cell internalization.


Assuntos
Complexos de Coordenação/toxicidade , DNA/química , Luz , Rutênio/química , Complexos de Coordenação/química , Humanos , Ligantes , Masculino , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Neoplasias da Próstata/tratamento farmacológico
18.
Angew Chem Int Ed Engl ; 54(16): 4885-9, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25663536

RESUMO

Photochemical internalization (PCI) has shown great promise as a therapeutic alternative for targeted drug delivery by light-harnessed activation. However, it has only been applicable to therapeutic macromolecules or medium-sized molecules. Herein we describe the use of an amphiphilic, water-soluble porphyrin-ß-cyclodextrin conjugate (mTHPP-ßCD) as a "Trojan horse" to facilitate the endocytosis of CD-guest tamoxifens into breast-cancer cells. Upon irradiation, the porphyrin core of mTHPP-ßCD expedited endosomal membrane rupture and tamoxifen release into the cytosol, as documented by confocal microscopy. The sustained complexation of mTHPP-ßCD with tamoxifen was corroborated by 2D NMR spectroscopy and FRET studies. Following the application of PCI protocols with 4-hydroxytamoxifen (4-OHT), estrogen-receptor ß-positive (Erß+, but not ERß-) cell groups exhibited extensive cytotoxicity and/or growth suspension even at 72 h after irradiation.


Assuntos
Portadores de Fármacos/química , Nanoconjugados/química , Tamoxifeno/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Luz , Células MCF-7 , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Porfirinas/química , Tamoxifeno/toxicidade , beta-Ciclodextrinas/química
19.
Chem Biol Drug Des ; 85(5): 653-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25303215

RESUMO

Hydroxyethyl starch (HES) was interacted with succinic anhydride affording a carboxylated derivative which has proved to be a promising polymeric drug delivery system. Specifically, this polymer is conveniently prepared, is biodegradable, non-immunogenic, and can encapsulate doxorubicin due to the protonation of the primary amino group of doxorubicin by the carboxylic group located on the branched scaffold of the polysaccharide. In addition, due to the polyhydroxylated character of the polysaccharide, the latter can act as a protective coating in an analogous manner to the PEG-chains ensuring prolonged circulation in vivo. In vitro experiments showed controlled release of doxorubicin to the nuclei of DU145 prostate cancer cells when the anticancer drug is incorporated in the carboxylated hydroxyethyl starch.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Derivados de Hidroxietil Amido/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Microscopia de Fluorescência , Polissacarídeos/química
20.
J Biol Chem ; 289(18): 12931-45, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24644280

RESUMO

The apolipoprotein (apo) E4 isoform has consistently emerged as a susceptibility factor for late-onset Alzheimer disease (AD), although the exact mechanism is not clear. A rare apoE4 mutant, apoE4[L28P] Pittsburgh, burdens carriers with an added risk for late-onset AD and may be a useful tool for gaining insights into the role of apoE4 in disease pathogenesis. Toward this end, we evaluated the effect of the L28P mutation on the structural and functional properties of apoE4. ApoE4[L28P] was found to have significantly perturbed thermodynamic properties, to have reduced helical content, and to expose a larger portion of the hydrophobic surface to the solvent. Furthermore, this mutant is thermodynamically destabilized and more prone to proteolysis. When interacting with lipids, apoE4[L28P] formed populations of lipoprotein particles with structural defects. The structural perturbations brought about by the mutation were accompanied by aberrant functions associated with the pathogenesis of AD. Specifically, apoE4[L28P] promoted the cellular uptake of extracellular amyloid ß peptide 42 (Aß42) by human neuroblastoma SK-N-SH cells as well as by primary mouse neuronal cells and led to increased formation of intracellular reactive oxygen species that persisted for at least 24 h. Furthermore, lipoprotein particles containing apoE4[L28P] induced intracellular reactive oxygen species formation and reduced SK-N-SH cell viability. Overall, our findings suggest that the L28P mutation leads to significant structural and conformational perturbations in apoE4 and can induce functional defects associated with neuronal Aß42 accumulation and oxidative stress. We propose that these structural and functional changes underlie the observed added risk for AD development in carriers of apoE4[L28P].


Assuntos
Doença de Alzheimer/genética , Substituição de Aminoácidos , Apolipoproteína E4/genética , Mutação , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Naftalenossulfonato de Anilina/química , Animais , Apolipoproteína E4/química , Apolipoproteína E4/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Dicroísmo Circular , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/metabolismo , Lipoproteínas/ultraestrutura , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Fatores de Risco , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA