Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vasc Res ; 58(4): 207-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839725

RESUMO

The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.


Assuntos
Proteínas Angiogênicas/metabolismo , Artérias/anatomia & histologia , Artérias/metabolismo , Modelos Anatômicos , Modelos Cardiovasculares , Neovascularização Fisiológica , Transdução de Sinais , Remodelação Vascular , Proteínas Angiogênicas/genética , Animais , Astronautas , Bioimpressão , Simulação por Computador , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Fractais , Regulação da Expressão Gênica , Humanos , Neovascularização Patológica , Neovascularização Fisiológica/genética , Impressão Tridimensional , Oclusão da Veia Retiniana/metabolismo , Oclusão da Veia Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais/genética , Software , Remodelação Vascular/genética , Ausência de Peso
2.
NPJ Microgravity ; 2: 16014, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725729

RESUMO

Radiation exposure in combination with other space environmental factors including microgravity, nutritional status, and deconditioning is a concern for long-duration space exploration missions. Astronauts experience altered iron homeostasis due to adaptations to microgravity and an iron-rich food system. Iron intake reaches three to six times the recommended daily allowance due to the use of fortified foods on the International Space Station. Iron is associated with certain optic neuropathies and can potentiate oxidative stress. This study examined the response of eye and vascular tissue to gamma radiation exposure (3 Gy fractionated at 37.5 cGy per day every other day for 8 fractions) in rats fed an adequate-iron diet or a high-iron diet. Twelve-week-old Sprague-Dawley rats were assigned to one of four experimental groups: adequate-iron diet/no radiation (CON), high-iron diet/no radiation (IRON), adequate-iron diet/radiation (RAD), and high-iron diet/radiation (IRON+RAD). Animals were maintained on the corresponding iron diet for 2 weeks before radiation exposure. As previously published, the high-iron diet resulted in elevated blood and liver iron levels. Dietary iron overload altered the radiation response observed in serum analytes, as evidenced by a significant increase in catalase levels and smaller decrease in glutathione peroxidase and total antioxidant capacity levels. 8-OHdG immunostaining, showed increased intensity in the retina after radiation exposure. Gene expression profiles of retinal and aortic vascular samples suggested an interaction between the response to radiation and high dietary iron. This study suggests that the combination of gamma radiation and high dietary iron has deleterious effects on retinal and vascular health and physiology.

3.
J Cell Biochem ; 114(3): 616-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22991253

RESUMO

Epstein-Barr virus (EBV) is the causative agent of mononucleosis and is also associated with several malignancies, including Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, among others. EBV reactivates during spaceflight, with EBV shedding in saliva increasing to levels ten times those observed pre-and post-flight. Although stress has been shown to increase reactivation of EBV, other factors such as radiation and microgravity have been hypothesized to contribute to reactivation in space. We used a modeled spaceflight environment to evaluate the influence of radiation and microgravity on EBV reactivation. BJAB (EBV-negative) and Raji (EBV-positive) cell lines were assessed for viability/apoptosis, viral antigen and reactive oxygen species expression, and DNA damage and repair. EBV-infected cells did not experience decreased viability and increased apoptosis due to modeled spaceflight, whereas an EBV-negative cell line did, suggesting that EBV infection provided protection against apoptosis and cell death. Radiation was the major contributor to EBV ZEBRA upregulation. Combining modeled microgravity and radiation increased DNA damage and reactive oxygen species while modeled microgravity alone decreased DNA repair in Raji cells. Additionally, EBV-infected cells had increased DNA damage compared to EBV-negative cells. Since EBV-infected cells do not undergo apoptosis as readily as uninfected cells, it is possible that virus-infected cells in EBV seropositive individuals may have an increased risk to accumulate DNA damage during spaceflight. More studies are warranted to investigate this possibility.


Assuntos
Herpesvirus Humano 4/metabolismo , Voo Espacial , Ativação Viral , Simulação de Ausência de Peso , Antígenos Virais/genética , Antígenos Virais/metabolismo , Apoptose , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Proteínas Virais/metabolismo , Ativação Viral/efeitos da radiação , Latência Viral
4.
J Radiat Res ; 53(2): 225-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22510595

RESUMO

Recent studies have indicated that autophagy may be one of the important pathways induced by ionizing radiation. Atorvastatin (statin), an inhibitor of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, may exhibit anticancer effects as an autophagy inducer. In our study, the cell killing and radiosensitizing effects of statin were analyzed in PC3 cell line. Activation of the autophagy pathway was analyzed using the GFP-LC3 assay and western blot to determine LC3-II expression. The radiosensitivity of PC3 cells was determined using the clonal survival assay, TUNEL assay, and the Annexin V apoptosis assay. The expression profiles of autophagy related genes were analyzed using a pathway specific real-time polymerase chain reaction (PCR) array. Autophagic response was induced in PC3 cells after exposure to statin and/or gamma rays. Inhibition of the autophagic process using small interfering RNAs (siRNA) targeting Atg7 and/or Atg12 significantly reduced radiosensitivity of PC3 cells. Statin also exhibited a significant apoptosis-inducing effect in PC3 cells, which can be partially suppressed by Atg7 siRNA. Cells treated with statin and gamma irradiation showed significantly reduced colony forming efficiency and increased number of Annexin V positive early apoptotic cells. Analysis of autophagy and its regulatory gene profile showed that the expressions of 22 genes out of 86 genes assessed were significantly altered in the cells exposed to combined treatment or statin alone. The data indicate that activation of the autophagy pathway may be responsible for apoptosis inducing effect of statin. Furthermore, combined treatment with radiation and autophagic inducer, such as statin, may be synergistic in inducing cell death of PC3 cells.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Ácidos Heptanoicos/administração & dosagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Pirróis/administração & dosagem , Tolerância a Radiação/efeitos dos fármacos , Atorvastatina , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Masculino , Radiossensibilizantes/administração & dosagem
5.
J Biol Chem ; 283(40): 27028-37, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18662981

RESUMO

The S phase-specific activation of NEIL1 and not of the other DNA glycosylases responsible for repairing oxidatively damaged bases in mammalian genomes and the activation of NEIL1 by proliferating cell nuclear antigen (PCNA) suggested preferential action by NEIL1 in oxidized base repair during DNA replication. Here we show that NEIL1 interacts with flap endonuclease 1 (FEN-1), an essential component of the DNA replication. FEN-1 is present in the NEIL1 immunocomplex isolated from human cell extracts, and the two proteins colocalize in the nucleus. FEN-1 stimulates the activity of NEIL1 in vitro in excising 5-hydroxyuracil from duplex, bubble, forked, and single-stranded DNA substrates by up to 5-fold. The disordered region near the C terminus of NEIL1, which is dispensable for activity, is necessary and sufficient for high affinity binding to FEN-1 (K(D) approximately = 0.2 microm). The interacting interface of FEN-1 is localized in its disordered C-terminal region uniquely present in mammalian orthologs. Fine structure mapping identified several Lys and Arg residues in this region that form salt bridges with Asp and Glu residues in NEIL1. NEIL1 was previously shown to initiate single nucleotide excision repair, which does not require FEN-1 or PCNA. The present study shows that NEIL1 could also participate in strand displacement repair synthesis (long patch repair (LP-BER)) mediated by FEN-1 and stimulated by PCNA. Interaction between NEIL1 and FEN-1 is essential for efficient NEIL1-initiated LP-BER. These studies strongly implicate NEIL1 in a distinct subpathway of LP-BER in replicating genomes.


Assuntos
Dano ao DNA/fisiologia , DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Endonucleases Flap/metabolismo , Genoma Humano/fisiologia , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Núcleo Celular/genética , DNA Glicosilases/genética , Ativação Enzimática , Endonucleases Flap/genética , Humanos , Oxirredução , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Fase S/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA