Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Theranostics ; 13(8): 2710-2720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215574

RESUMO

Rationale: Efficient labeling methods for mesenchymal stem cells (MSCs) are crucial for tracking and understanding their behavior in regenerative medicine applications, particularly in cartilage defects. MegaPro nanoparticles have emerged as a potential alternative to ferumoxytol nanoparticles for this purpose. Methods: In this study, we employed mechanoporation to develop an efficient labeling method for MSCs using MegaPro nanoparticles and compared their effectiveness with ferumoxytol nanoparticles in tracking MSCs and chondrogenic pellets. Pig MSCs were labeled with both nanoparticles using a custom-made microfluidic device, and their characteristics were analyzed using various imaging and spectroscopy techniques. The viability and differentiation capacity of labeled MSCs were also assessed. Labeled MSCs and chondrogenic pellets were implanted into pig knee joints and monitored using MRI and histological analysis. Results: MegaPro-labeled MSCs demonstrated shorter T2 relaxation times, higher iron content, and greater nanoparticle uptake compared to ferumoxytol-labeled MSCs, without significantly affecting their viability and differentiation capacity. Post-implantation, MegaPro-labeled MSCs and chondrogenic pellets displayed a strong hypointense signal on MRI with considerably shorter T2* relaxation times compared to adjacent cartilage. The hypointense signal of both MegaPro- and ferumoxytol-labeled chondrogenic pellets decreased over time. Histological evaluations showed regenerated defect areas and proteoglycan formation with no significant differences between the labeled groups. Conclusion: Our study demonstrates that mechanoporation with MegaPro nanoparticles enables efficient MSC labeling without affecting viability or differentiation. MegaPro-labeled cells show enhanced MRI tracking compared to ferumoxytol-labeled cells, emphasizing their potential in clinical stem cell therapies for cartilage defects.


Assuntos
Doenças das Cartilagens , Transplante de Células-Tronco Mesenquimais , Nanopartículas , Animais , Suínos , Óxido Ferroso-Férrico , Células-Tronco , Cartilagem , Imageamento por Ressonância Magnética/métodos , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Rastreamento de Células/métodos
2.
Invest Radiol ; 58(6): 388-395, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729074

RESUMO

OBJECTIVES: Iron oxide nanoparticles have been used to track the accumulation of chimeric antigen receptor (CAR) T cells with magnetic resonance imaging (MRI). However, the only nanoparticle available for clinical applications to date, ferumoxytol, has caused rare but severe anaphylactic reactions. MegaPro nanoparticles (MegaPro-NPs) provide an improved safety profile. We evaluated whether MegaPro-NPs can be applied for in vivo tracking of CAR T cells in a mouse model of glioblastoma multiforme. MATERIALS AND METHODS: We labeled tumor-targeted CD70CAR (8R-70CAR) T cells and non-tumor-targeted controls with MegaPro-NPs, followed by inductively coupled plasma optical emission spectroscopy, Prussian blue staining, and cell viability assays. Next, we treated 42 NRG mice bearing U87-MG/eGFP-fLuc glioblastoma multiforme xenografts with MegaPro-NP-labeled/unlabeled CAR T cells or labeled untargeted T cells and performed serial MRI, magnetic particle imaging, and histology studies. The Kruskal-Wallis test was conducted to evaluate overall group differences, and the Mann-Whitney U test was applied to compare the pairs of groups. RESULTS: MegaPro-NP-labeled CAR T cells demonstrated significantly increased iron uptake compared with unlabeled controls ( P < 0.01). Cell viability, activation, and exhaustion markers were not significantly different between the 2 groups ( P > 0.05). In vivo, tumor T2* relaxation times were significantly lower after treatment with MegaPro-NP-labeled CAR T cells compared with untargeted T cells ( P < 0.01). There is no significant difference in tumor growth inhibition between mice injected with labeled and unlabeled CAR T cells. CONCLUSIONS: MegaPro-NPs can be used for in vivo tracking of CAR T cells. Because MegaPro-NPs recently completed phase II clinical trial investigation as an MRI contrast agent, MegaPro-NP is expected to be applied to track CAR T cells in cancer immunotherapy trials in the near future.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Camundongos , Humanos , Animais , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Linfócitos T , Linhagem Celular Tumoral
3.
Eur J Nucl Med Mol Imaging ; 50(6): 1689-1698, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36717409

RESUMO

PURPOSE: To assess and compare the diagnostic accuracy of whole-body (WB) DW-MRI with 2-[18F]FDG PET for staging and treatment monitoring of children with Langerhans cell histiocytosis (LCH). METHODS: Twenty-three children with LCH underwent 2-[18F]FDG PET and WB DW-MRI at baseline. Two nuclear medicine physicians and two radiologists independently assessed presence/absence of tumors in 8 anatomical areas. Sixteen children also performed 2-[18F]FDG PET and WB DW-MRI at follow-up. One radiologist and one nuclear medicine physician revised follow-up scans and collected changes in tumor apparent diffusion (ADC) and standardized uptake values (SUV) before and after therapy in all detectable lesions. 2-[18F]FDG PET results were considered the standard of reference for tumor detection and evaluation of treatment response according to Lugano criteria. Sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of WB DW-MRI at baseline were calculated, and the 95% confidence intervals were estimated by using the Clopper-Pearson (exact) method; changes in tumor SUVs and ADC were compared using a Mann-Whitney U test. Agreement between reviewers was assessed with a Cohen's weighted kappa coefficient. Analyses were conducted using SAS software version 9.4. RESULTS: Agreement between reviewers was perfect (kappa coefficient = 1) for all analyzed regions but spine and neck (kappa coefficient = 0.89 and 0.83, respectively) for 2-[18F]FDG PET images, and abdomen and pelvis (kappa coefficient = 0.65 and 0.88, respectively) for WB DW-MRI. Sensitivity and specificity were 95.5% and 100% for WB DW-MRI compared to 2-[18F]FDG PET. Pre to post-treatment changes in SUVratio and ADCmean were inversely correlated for all lesions (r: -0.27, p = 0·06) and significantly different between responders and non-responders to chemotherapy (p = 0.0006 and p = 0·003 for SUVratio and ADCmean, respectively). CONCLUSION: Our study showed that WB DW-MRI has similar accuracy to 2-[18F]FDG PET for staging and treatment monitoring of LCH in children. While 2-[18F]FDG PET remains an approved radiological examination for assessing metabolically active disease, WB DW-MRI could be considered as an alternative approach without radiation exposure. The combination of both modalities might have advantages over either approach alone.


Assuntos
Histiocitose de Células de Langerhans , Neoplasias , Humanos , Criança , Fluordesoxiglucose F18 , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Compostos Radiofarmacêuticos , Imagem Corporal Total/métodos , Histiocitose de Células de Langerhans/diagnóstico por imagem , Histiocitose de Células de Langerhans/terapia , Tomografia por Emissão de Pósitrons/métodos , Estadiamento de Neoplasias
4.
Sci Rep ; 12(1): 11696, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810189

RESUMO

The purpose of our study was to investigate if vascular injury in immature epiphyses affects cartilage repair outcomes of matrix-associated stem cell implants (MASI). Porcine bone marrow mesenchymal stromal stem cells (BMSCs) suspended in a fibrin glue scaffold were implanted into 24 full-thickness cartilage defects (5 mm ø) of the bilateral distal femur of six Göttingen minipigs (n = 12 defects in 6 knee joints of 3 immature pigs; age 3.5-4 months; n = 12 defects in 6 knee joints of 3 mature control pigs; age, 21-28 months). All pigs underwent magnetic resonance imaging (MRI) at 2, 4, 12 (n = 24 defects), and 24 weeks (n = 12 defects). After the last imaging study, pigs were sacrificed, joints explanted and evaluated with VEGF, H&E, van Gieson, Mallory, and Safranin O stains. Results of mature and immature cartilage groups were compared using the Wilcoxon signed-rank test. Quantitative scores for subchondral edema at 2 weeks were correlated with quantitative scores for cartilage repair (MOCART score and ICRS score) at 12 weeks as well as Pineda scores at end of the study, using linear regression analysis. On serial MRIs, mature joints demonstrated progressive healing of cartilage defects while immature joints demonstrated incomplete healing and damage of the subchondral bone. The MOCART score at 12 weeks was significantly higher for mature joints (79.583 ± 7.216) compared to immature joints (30.416 ± 10.543, p = 0.002). Immature cartilage demonstrated abundant microvessels while mature cartilage did not contain microvessels. Accordingly, cartilage defects in immature joints showed a significantly higher number of disrupted microvessels, subchondral edema, and angiogenesis compared to mature cartilage. Quantitative scores for subchondral edema at 2 weeks were negatively correlated with MOCART scores (r = - 0.861) and ICRS scores (r = - 0.901) at 12 weeks and positively correlated with Pineda scores at the end of the study (r = 0.782). Injury of epiphyseal blood vessels in immature joints leads to subchondral bone defects and limits cartilage repair after MASI.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Células-Tronco Mesenquimais , Lesões do Sistema Vascular , Animais , Doenças das Cartilagens/diagnóstico por imagem , Doenças das Cartilagens/patologia , Doenças das Cartilagens/terapia , Cartilagem Articular/patologia , Edema/patologia , Epífises/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Suínos , Porco Miniatura , Lesões do Sistema Vascular/patologia
5.
Pediatr Radiol ; 52(2): 391-400, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33929564

RESUMO

Accurate staging and re-staging of cancer in children is crucial for patient management. Currently, children with a newly diagnosed cancer must undergo a series of imaging tests, which are stressful, time-consuming, partially redundant, expensive, and can require repetitive anesthesia. New approaches for pediatric cancer staging can evaluate the primary tumor and metastases in a single session. However, traditional one-stop imaging tests, such as CT and positron emission tomography (PET)/CT, are associated with considerable radiation exposure. This is particularly concerning for children because they are more sensitive to ionizing radiation than adults and they live long enough to experience secondary cancers later in life. In this review article we discuss child-tailored imaging tests for tumor detection and therapy response assessment - tests that can be obtained with substantially reduced radiation exposure compared to traditional CT and PET/CT scans. This includes diffusion-weighted imaging (DWI)/MRI and integrated [F-18]2-fluoro-2-deoxyglucose (18F-FDG) PET/MRI scans. While several investigators have compared the value of DWI/MRI and 18F-FDG PET/MRI for staging pediatric cancer, the value of these novel imaging technologies for cancer therapy monitoring has received surprisingly little attention. In this article, we share our experiences and review existing literature on this subject.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Criança , Imagem de Difusão por Ressonância Magnética , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Estadiamento de Neoplasias , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Imagem Corporal Total
6.
Radiol Artif Intell ; 3(6): e200232, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34870211

RESUMO

PURPOSE: To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma. MATERIALS AND METHODS: In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 patients with lymphoma (mean age, 16.4 years ± 6.4 [standard deviation]) underwent 18F-FDG PET/MRI between July 2015 and August 2019 at baseline and after induction chemotherapy. Full-dose 18F-FDG PET data (3 MBq/kg) were simulated to lower 18F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG dose [hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 12.5%Sim, and 6.25%Sim, respectively]). A U.S. Food and Drug Administration-approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUVmax) of the tumor normalized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of correct response status were computed using full-dose PET as the reference standard. RESULTS: With decreasing simulated radiotracer doses, tumor SUVmax increased. A dose below 75%Sim of the full dose led to erroneous upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%Sim; 93% [13 of 14 patients] for 50%Sim; and 100% [14 of 14 patients] below 50%Sim; P < .05 for all). CNN-enhanced low-dose PET/MRI scans at 75%Sim and 50%Sim enabled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%Sim, and augmented 50%Sim images. CONCLUSION: CNN enhancement of PET/MRI scans may enable 50% 18F-FDG dose reduction with correct treatment response assessment of children and young adults with lymphoma.Keywords: Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, Lymphoma, Tumor Response, Whole-Body Imaging, Technology AssessmentClinical trial registration no: NCT01542879 Supplemental material is available for this article. © RSNA, 2021.

7.
Pediatr Radiol ; 51(13): 2521-2529, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34410452

RESUMO

BACKGROUND: The diagnosis of joint infiltration by a malignant bone tumor affects surgical management. The specificity of standard magnetic resonance imaging (MRI) for diagnosing joint infiltration is limited. During our MRI evaluations with ferumoxytol nanoparticles of pediatric and young adult patients with bone sarcomas, we observed a surprising marked T1 enhancement of joint and pleural effusions in some patients but not in others. OBJECTIVE: To evaluate if nanoparticle extravasation differed between joints and pleura with and without tumor infiltration. MATERIALS AND METHODS: We retrospectively identified 15 pediatric and young adult patients (mean age: 16±4 years) with bone sarcomas who underwent 18 MRI scans at 1 h (n=7) or 24 h (n=11) after intravenous ferumoxytol infusion. Twelve patients also received a gadolinium-enhanced MRI. We determined tumor invasion into the joint or pleural space based on histology (n=11) and imaging findings (n=4). We compared the signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) of the joint or pleural fluid for tumors with and without invasion using a Mann-Whitney U test. RESULTS: MRI scans 24 h after intravenous ferumoxytol infusion demonstrated a positive T1 enhancement of the effusion in all joints and pleural spaces with tumor infiltration and no joint or pleural space without infiltration. Corresponding SNR (P=0.004) and CNR (P=0.004) values were significantly higher for joints and pleural spaces with tumor infiltration than without. By contrast, unenhanced MRI, gadolinium-enhanced MRI and 1-h post-contrast ferumoxytol MRI did not show any enhancement of the joint or pleural effusion, with or without tumor infiltration. CONCLUSION: This pilot study suggests that 24-h post-contrast ferumoxytol MRI scans can noninvasively differentiate between joints with and without tumor infiltration.


Assuntos
Óxido Ferroso-Férrico , Osteossarcoma , Adolescente , Adulto , Criança , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética , Projetos Piloto , Pleura , Estudos Retrospectivos , Adulto Jovem
8.
Eur J Nucl Med Mol Imaging ; 48(9): 2771-2781, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33527176

RESUMO

PURPOSE: To generate diagnostic 18F-FDG PET images of pediatric cancer patients from ultra-low-dose 18F-FDG PET input images, using a novel artificial intelligence (AI) algorithm. METHODS: We used whole-body 18F-FDG-PET/MRI scans of 33 children and young adults with lymphoma (3-30 years) to develop a convolutional neural network (CNN), which combines inputs from simulated 6.25% ultra-low-dose 18F-FDG PET scans and simultaneously acquired MRI scans to produce a standard-dose 18F-FDG PET scan. The image quality of ultra-low-dose PET scans, AI-augmented PET scans, and clinical standard PET scans was evaluated by traditional metrics in computer vision and by expert radiologists and nuclear medicine physicians, using Wilcoxon signed-rank tests and weighted kappa statistics. RESULTS: The peak signal-to-noise ratio and structural similarity index were significantly higher, and the normalized root-mean-square error was significantly lower on the AI-reconstructed PET images compared to simulated 6.25% dose images (p < 0.001). Compared to the ground-truth standard-dose PET, SUVmax values of tumors and reference tissues were significantly higher on the simulated 6.25% ultra-low-dose PET scans as a result of image noise. After the CNN augmentation, the SUVmax values were recovered to values similar to the standard-dose PET. Quantitative measures of the readers' diagnostic confidence demonstrated significantly higher agreement between standard clinical scans and AI-reconstructed PET scans (kappa = 0.942) than 6.25% dose scans (kappa = 0.650). CONCLUSIONS: Our CNN model could generate simulated clinical standard 18F-FDG PET images from ultra-low-dose inputs, while maintaining clinically relevant information in terms of diagnostic accuracy and quantitative SUV measurements.


Assuntos
Inteligência Artificial , Exposição à Radiação , Criança , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Imagem Corporal Total , Adulto Jovem
9.
Theranostics ; 10(13): 6024-6034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483435

RESUMO

Autologous therapeutic cells are typically harvested and transplanted in one single surgery. This makes it impossible to label them with imaging biomarkers through classical transfection techniques in a laboratory. To solve this problem, we developed a novel microfluidic device, which provides highly efficient labeling of therapeutic cells with imaging biomarkers through mechanoporation. Methods: Studies were performed with a new, custom-designed microfluidic device, which contains ridges, which compress adipose tissue-derived stem cells (ADSCs) during their device passage. Cell relaxation after compression leads to cell volume exchange for convective transfer of nanoparticles and nanoparticle uptake into the cell. ADSCs were passed through the microfluidic device doped with iron oxide nanoparticles and 18F-fluorodeoxyglucose (FDG). The cellular nanoparticle and radiotracer uptake was evaluated with DAB-Prussian blue, fluorescent microscopy, and inductively coupled plasma spectrometry (ICP). Labeled and unlabeled ADSCs were imaged in vitro as well as ex vivo in pig knee specimen with magnetic resonance imaging (MRI) and positron emission tomography (PET). T2 relaxation times and radiotracer signal were compared between labeled and unlabeled cell transplants using Student T-test with p<0.05. Results: We report significant labeling of ADSCs with iron oxide nanoparticles and 18F-FDG within 12+/-3 minutes. Mechanoporation of ADSCs with our microfluidic device led to significant nanoparticle (> 1 pg iron per cell) and 18F-FDG uptake (61 mBq/cell), with a labeling efficiency of 95%. The labeled ADSCs could be detected with MRI and PET imaging technologies: Nanoparticle labeled ADSC demonstrated significantly shorter T2 relaxation times (24.2±2.1 ms) compared to unlabeled cells (79.6±0.8 ms) on MRI (p<0.05) and 18F-FDG labeled ADSC showed significantly higher radiotracer uptake (614.3 ± 9.5 Bq / 1×104 cells) compared to controls (0.0 ± 0.0 Bq/ 1×104 cells) on gamma counting (p<0.05). After implantation of dual-labeled ADSCs into pig knee specimen, the labeled ADSCs revealed significantly shorter T2 relaxation times (41±0.6 ms) compared to unlabeled controls (90±1.8 ms) (p<0.05). Conclusion: The labeling of therapeutic cells with our new microfluidic device does not require any chemical intervention, therefore it is broadly and immediately clinically applicable. Cellular labeling using mechanoporation can improve our understanding of in vivo biodistributions of therapeutic cells and ultimately improve long-term outcomes of therapeutic cell transplants.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Imagem Multimodal/métodos , Células-Tronco/metabolismo , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Coloração e Rotulagem/métodos , Suínos
10.
Radiology ; 296(1): 143-151, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32368961

RESUMO

Background Whole-body diffusion-weighted (DW) MRI can help detect cancer with high sensitivity. However, the assessment of therapy response often requires information about tumor metabolism, which is measured with fluorine 18 fluorodeoxyglucose (FDG) PET. Purpose To compare tumor therapy response with whole-body DW MRI and FDG PET/MRI in children and young adults. Materials and Methods In this prospective, nonrandomized multicenter study, 56 children and young adults (31 male and 25 female participants; mean age, 15 years ± 4 [standard deviation]; age range, 6-22 years) with lymphoma or sarcoma underwent 112 simultaneous whole-body DW MRI and FDG PET/MRI between June 2015 and December 2018 before and after induction chemotherapy (ClinicalTrials.gov identifier: NCT01542879). The authors measured minimum tumor apparent diffusion coefficients (ADCs) and maximum standardized uptake value (SUV) of up to six target lesions and assessed therapy response after induction chemotherapy according to the Lugano classification or PET Response Criteria in Solid Tumors. The authors evaluated agreements between whole-body DW MRI- and FDG PET/MRI-based response classifications with Krippendorff α statistics. Differences in minimum ADC and maximum SUV between responders and nonresponders and comparison of timing for discordant and concordant response assessments after induction chemotherapy were evaluated with the Wilcoxon test. Results Good agreement existed between treatment response assessments after induction chemotherapy with whole-body DW MRI and FDG PET/MRI (α = 0.88). Clinical response prediction according to maximum SUV (area under the receiver operating characteristic curve = 100%; 95% confidence interval [CI]: 99%, 100%) and minimum ADC (area under the receiver operating characteristic curve = 98%; 95% CI: 94%, 100%) were similar (P = .37). Sensitivity and specificity were 96% (54 of 56 participants; 95% CI: 86%, 99%) and 100% (56 of 56 participants; 95% CI: 54%, 100%), respectively, for DW MRI and 100% (56 of 56 participants; 95% CI: 93%, 100%) and 100% (56 of 56 participants; 95% CI: 54%, 100%) for FDG PET/MRI. In eight of 56 patients who underwent imaging after induction chemotherapy in the early posttreatment phase, chemotherapy-induced changes in tumor metabolism preceded changes in proton diffusion (P = .002). Conclusion Whole-body diffusion-weighted MRI showed significant agreement with fluorine 18 fluorodeoxyglucose PET/MRI for treatment response assessment in children and young adults. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Imagem Corporal Total/métodos , Adolescente , Adulto , Criança , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Imagem Multimodal/métodos , Pediatria/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA