Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229160

RESUMO

Extracellular vesicles (EVs) are heterogenous in size, biogenesis, cargo and function. Beside small EVs, aggressive tumor cells release a population of particularly large EVs, namely large oncosomes (LO). This study provides the first resource of label-free quantitative proteomics of LO and small EVs obtained from distinct cancer cell types (prostate, breast, and glioma). This dataset was integrated with a SWATH Proteomic assay on LO, rigorously isolated from the plasma of patients with metastatic prostate cancer (PC). Proteins enriched in LO, which were identified also at the RNA level, and found in plasma LO significantly correlated with PC progression. Single EV RNA-Seq of the PC cell-derived LO confirmed some of the main findings from the bulk RNA-Seq, providing first evidence that single cell technologies can be successfully applied to EVs. This multiomics resource of cancer EVs can be leveraged for developing a multi-analyte approach for liquid biopsy.

2.
EMBO J ; 42(24): e113590, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073509

RESUMO

Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.


Assuntos
Retrovirus Endógenos , Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular , Células Dendríticas , Neoplasias/metabolismo
3.
J Extracell Vesicles ; 12(12): e12384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38031976

RESUMO

Cell-cell communication within the complex tumour microenvironment is critical to cancer progression. Tumor-derived extracellular vesicles (TD-EVs) are key players in this process. They can interact with immune cells and modulate their activity, either suppressing or activating the immune system. Deciphering the interactions between TD-EVs and immune cells is essential to understand immune modulation by cancer cells. Fluorescent labelling of TD-EVs is a method of choice to study such interaction. This work aims to determine the impact of EV labelling methods on the detection by imaging flow cytometry and multicolour spectral flow cytometry of EV interaction and capture by the different immune cell types within human Peripheral Blood Mononuclear Cells (PBMCs). EVs released by the triple-negative breast carcinoma cell line MDA-MB-231 were labelled either with the lipophilic dye MemGlow-488 (MG-488), Carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) or through ectopic expression of a MyrPalm-superFolderGFP reporter (mp-sfGFP), which incorporates into EVs during their biogenesis. Our results show that these labelling strategies, although analysed with the same techniques, led to diverging results. While MG-488-labelled EVs incorporate in all cell types, CFSE-labelled EVs are restricted to a minor subset of cells and mp-sfGFP-labelled EVs are mainly detected in CD14+ monocytes which are the main uptakers of EVs and other particles, regardless of the labelling method. Furthermore, our results show that the method used for EV labelling influences the detection of the different types of EV interactions with the recipient cells. Specifically, MG-488, CFSE and mp-sfGFP result in observation suggesting, respectively, transient EV-PM interaction that results in dye transfer, EV content delivery, and capture of intact EVs. Consequently, the type of EV labelling method has to be considered as they can provide complementary information on various types of EV-cell interaction and EV fate.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares , Succinimidas/metabolismo , Linhagem Celular
4.
J Extracell Vesicles ; 12(8): e12339, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548263

RESUMO

Despite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size-exclusion chromatography (DG-SEC), differential ultracentrifugation (dUC) and/or stand-alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer-associated fibroblasts (CAF). EV-enriched but protein-depleted versus EV-depleted but protein-enriched DG-SEC fractions, and EV-containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose-dependently evaluated for monocyte-derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG-SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF-A and MCP-1 and potently stimulated MoDC maturation. In contrast, EV-containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose-dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method-dependent off-target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Ultracentrifugação
5.
J Extracell Vesicles ; 12(8): e12352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525398

RESUMO

The tetraspanins CD9, CD81 and CD63 are major components of extracellular vesicles (EVs). Yet, their impact on EV composition remains under-investigated. In the MCF7 breast cancer cell line CD63 was as expected predominantly intracellular. In contrast CD9 and CD81 strongly colocalized at the plasma membrane, albeit with different ratios at different sites, which may explain a higher enrichment of CD81 in EVs. Absence of these tetraspanins had little impact on the EV protein composition as analysed by quantitative mass spectrometry. We also analysed the effect of concomitant knock-out of CD9 and CD81 because these two tetraspanins play similar roles in several cellular processes and associate directly with two Ig domain proteins, CD9P-1/EWI-F/PTGFRN and EWI-2/IGSF8. These were the sole proteins significantly decreased in the EVs of double CD9- and CD81-deficient cells. In the case of EWI-2, this is primarily a consequence of a decreased cell expression level. In conclusion, this study shows that CD9, CD81 and CD63, commonly used as EV protein markers, play a marginal role in determining the protein composition of EVs released by MCF7 cells and highlights a regulation of the expression level and/or trafficking of CD9P-1 and EWI-2 by CD9 and CD81.


Assuntos
Vesículas Extracelulares , Tetraspanina 28 , Tetraspanina 29 , Tetraspanina 30 , Movimento Celular , Vesículas Extracelulares/metabolismo , Proteômica , Tetraspanina 28/metabolismo , Humanos , Células MCF-7 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
6.
J Extracell Vesicles ; 11(7): e12242, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35790086

RESUMO

Eukaryotic cells, including cancer cells, secrete highly heterogeneous populations of extracellular vesicles (EVs). EVs could have different subcellular origin, composition and functional properties, but tools to distinguish between EV subtypes are scarce. Here, we tagged CD63- or CD9-positive EVs secreted by triple negative breast cancer cells with Nanoluciferase enzyme, to set-up a miniaturized method to quantify secretion of these two EV subtypes directly in the supernatant of cells. We performed a cell-based high-content screening to identify clinically-approved drugs able to affect EV secretion. One of the identified hits is Homosalate, an anti-inflammatory drug found in sunscreens which robustly increased EVs' release. Comparing EVs induced by Homosalate with those induced by Bafilomycin A1, we demonstrate that: (1) the two drugs act on EVs generated in distinct subcellular compartments, and (2) EVs released by Homosalate-, but not by Bafilomycin A1-treated cells enhance resistance to anchorage loss in another recipient epithelial tumour cell line. In conclusion, we identified a new drug modifying EV release and demonstrated that under influence of different drugs, triple negative breast cancer cells release EV subpopulations from different subcellular origins harbouring distinct functional properties.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Suplementos Nutricionais , Humanos , Salicilatos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
J Extracell Vesicles ; 11(5): e12210, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35527349

RESUMO

Long noncoding (lnc)RNAs modulate gene expression alongside presenting unexpected source of neoantigens. Despite their immense interest, their ability to be transferred and control adjacent cells is unknown. Extracellular Vesicles (EVs) offer a protective environment for nucleic acids, with pro and antitumourigenic functions by controlling the immune response. In contrast to extracellular nonvesicular RNA, few studies have addressed the full RNA content within human fluids' EVs and have compared them with their tissue of origin. Here, we performed Total RNA-Sequencing on six Formalin-Fixed-Paraffin-Embedded (FFPE) prostate cancer (PCa) tumour tissues and their paired urinary (u)EVs to provide the first whole transcriptome comparison from the same patients. UEVs contain simplified transcriptome with intron-free cytoplasmic transcripts and enriched lnc/circular (circ)RNAs, strikingly common to an independent 20 patients' urinary cohort. Our full cellular and EVs transcriptome comparison within three PCa cell lines identified a set of overlapping 14 uEV-circRNAs characterized as essential for prostate cell proliferation in vitro and 28 uEV-lncRNAs belonging to the cancer-related lncRNA census (CLC2). In addition, we found 15 uEV-lncRNAs, predicted to encode 768 high-affinity neoantigens, and for which three of the encoded-ORF produced detectable unmodified peptides by mass spectrometry. Our dual analysis of EVs-lnc/circRNAs both in urines' and in vitro's EVs provides a fundamental resource for future uEV-lnc/circRNAs phenotypic characterization involved in PCa.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Vesículas Extracelulares/genética , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Circular , RNA Longo não Codificante/genética , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 119(17): e2107394119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439048

RESUMO

Tumor associated macrophages (TAMs), which differentiate from circulating monocytes, are pervasive across human cancers and comprise heterogeneous populations. The contribution of tumor-derived signals to TAM heterogeneity is not well understood. In particular, tumors release both soluble factors and extracellular vesicles (EVs), whose respective impact on TAM precursors may be different. Here, we show that triple negative breast cancer cells (TNBCs) release EVs and soluble molecules promoting monocyte differentiation toward distinct macrophage fates. EVs specifically promoted proinflammatory macrophages bearing an interferon response signature. The combination in TNBC EVs of surface CSF-1 promoting survival and cargoes promoting cGAS/STING or other activation pathways led to differentiation of this particular macrophage subset. Notably, macrophages expressing the EV-induced signature were found among patients' TAMs. Furthermore, higher expression of this signature was associated with T cell infiltration and extended patient survival. Together, this data indicates that TNBC-released CSF-1-bearing EVs promote a tumor immune microenvironment associated with a better prognosis in TNBC patients.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Vesículas Extracelulares/fisiologia , Humanos , Macrófagos , Neoplasias de Mama Triplo Negativas/patologia
9.
Cell Rep Methods ; 2(1): 100136, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35474866

RESUMO

Extracellular vesicles (EVs) of various types are released or shed from all cells. EVs carry proteins and contain additional protein and nucleic acid cargo that relates to their biogenesis and cell of origin. EV cargo in liquid biopsies is of widespread interest owing to its ability to provide a retrospective snapshot of cell state at the time of EV release. For the purposes of EV cargo analysis and repertoire profiling, multiplex assays are an essential tool in multiparametric analyte studies but are still being developed for high-parameter EV protein detection. Although bead-based EV multiplex analyses offer EV profiling capabilities with conventional flow cytometers, the utilization of EV multiplex assays has been limited by the lack of software analysis tools for such assays. To facilitate robust EV repertoire studies, we developed multiplex analysis post-acquisition analysis (MPAPASS) open-source software for stitched multiplex analysis, EV database-compatible reporting, and visualization of EV repertoires.


Assuntos
Vesículas Extracelulares , Estudos Retrospectivos , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Software
10.
Toxicol Lett ; 360: 33-43, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181468

RESUMO

Despite decreased rates of tobacco smoking in many areas, cigarette smoking remains a major contributor to many health problems. Cigarette smoking can reduce immune system functioning while concurrently increasing inflammation. Dendritic cells in the lung exposed to cigarette smoke become stimulated and go on to activate T-cells. Extracellular vesicles (EVs) are nano-sized particles released by cells. They participate in intercellular communication by transferring functional proteins and nucleic acids to recipient cells and have been implicated in immune responses. For example, they can display MHC-peptide complexes to activate T-cells. In the current study, we sought to understand the role of cigarette smoke extract (CSE) on dendritic cell-derived EVs and their capacity to activate and differentiate T-cells. Primary human dendritic cells (iDCs) were exposed to CSE and EVs were separated and characterized. We exposed autologous primary CD4 + T-cells to iDC-EVs and observed T helper cell populations skewing towards Th1 and Th17 phenotypes. As HIV + individuals are disproportionately likely to be current smokers, we also examined the effects of iDC-EVs on acutely infected T-cells as well as on a cell model of HIV latency (ACH-2). We found that in most cases, iDC-CSE EVs tended to reduce p24 release from the acutely infected primary T-cells, albeit with great variability. We did not observe large effects of iDC-EVs or direct CSE exposure on p24 release from the ACH-2 cell line. Together, these data suggest that iDC-CSE EVs have the capacity to modulate the immune responses, in part by pushing T-cells towards Th1 and Th17 phenotypes.


Assuntos
Fumar Cigarros , Vesículas Extracelulares , Células Dendríticas , Vesículas Extracelulares/metabolismo , Ativação Linfocitária , Replicação Viral
11.
J Extracell Biol ; 1(7): e51, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38938580

RESUMO

Detection of cell-free circulating tumour DNA (ctDNA) and cancer-specific extracellular vesicles (EVs) in patient blood have been widely explored as non-invasive biomarkers for cancer detection and disease follow up. However, most of the protocols used to isolate EVs co-isolate other components and the actual value of EV-associated markers remain unclear. To determine the optimal source of clinically-relevant circulating biomarkers in breast cancer, we applied a size exclusion chromatography (SEC) procedure to analyse separately the content in nucleic acids of EV-enriched and EV-depleted fractions, in comparison to total plasma. Both cellular and mitochondrial DNA (cellDNA and mtDNA) were detected in EV-rich and EV-poor fractions. Analysing specific mutations identified from tumour tissues, we detected tumour-specific cellular alleles in all SEC fractions. However, quantification of ctDNA from total plasma was more sensitive than from any SEC fractions. On the other hand, mtDNA was preferentially enriched in EV fractions from healthy donor, whereas cancer patients displayed more abundant mtDNA in total plasma, and equally distributed in all fractions. In contrast to nucleic acids, using a Multiplexed bead-based EV-analysis assay, we identified three surface proteins enriched in EVs from metastatic breast cancer plasma, suggesting that a small set of EV surface molecules could provide a disease signature. Our findings provide evidence that the detection of DNA within total circulating EVs does not add value as compared to the whole plasma, at least in the metastatic breast cancer patients used here. However, analysis of a subtype of EV-associated proteins may reliably identify cancer patients. These non-invasive biomarkers represent a promising tool for cancer diagnosis and real-time monitoring of treatment efficacy and these results will impact the development of therapeutic approaches using EVs as targets or biomarkers of cancer.

12.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446922

RESUMO

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Assuntos
Vesículas Extracelulares , Microscopia/métodos , Animais , Corantes/química , Epitopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Corantes Fluorescentes/química , Humanos
13.
Nat Commun ; 12(1): 4389, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282141

RESUMO

Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type.


Assuntos
Exossomos/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Vesículas Extracelulares/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Técnicas de Inativação de Genes , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteômica
14.
Nat Commun ; 12(1): 1864, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767144

RESUMO

Extracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kinetics, and temperature-block experiments suggest that EV uptake is a low yield process (~1% spontaneous rate at 1 h). Further characterization of this limited EV uptake, through fractionation of membranes and cytosol, revealed cytosolic release (~30% of the uptaken EVs) in acceptor cells. This release is inhibited by bafilomycin A1 and overexpression of IFITM proteins, which prevent virus entry and fusion. Our results show that EV content release requires endosomal acidification and suggest the involvement of membrane fusion.


Assuntos
Antígenos de Diferenciação/metabolismo , Transporte Biológico/fisiologia , Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/metabolismo , Células HEK293 , Células HeLa , Humanos , Luciferases/metabolismo , Macrolídeos/farmacologia , Fusão de Membrana/fisiologia
15.
EMBO J ; 39(16): e105119, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32809264

RESUMO

Extracellular vesicles mediate transfer of diverse molecular content to target cells in order to induce phenotypic changes, which has put them under the spotlight as likely major players in cell-to-cell communication. However, extracellular vesicle heterogeneity in terms of intracellular origin has only recently been recognized as a potential determinant of their activity. Recent work by Fan et al (2020) illustrates how lack of external resources that affect cellular homeostasis and signaling can also modulate EV biogenesis, by inducing the production of a novel subpopulation of exosomes enriched in Rab11a with context-dependent roles in Drosophila gland physiology and cancer cell aggressiveness.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Comunicação Celular , Glutamina , Transdução de Sinais
16.
Cytotherapy ; 22(9): 482-485, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32425691

RESUMO

STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais/citologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Exossomos/transplante , Vesículas Extracelulares/transplante , Humanos , Sociedades Científicas , Tratamento Farmacológico da COVID-19
17.
J Extracell Vesicles ; 8(1): 1687275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998449

RESUMO

Inflammation is a hallmark of HIV infection. Among the multiple stimuli that can induce inflammation in untreated infection, ongoing viral replication is a primary driver. After initiation of effective combined antiretroviral therapy (cART), HIV replication is drastically reduced or halted. However, even virologically controlled patients may continue to have abnormal levels of inflammation. A number of factors have been proposed to cause inflammation in HIV infection: among others, residual (low-level) HIV replication, production of HIV protein or RNA in the absence of replication, microbial translocation from the gut to the circulation, co-infections, and loss of immunoregulatory responses. Importantly, chronic inflammation in HIV-infected individuals increases the risk for a number of non-infectious co-morbidities, including cancer and cardiovascular disease. Thus, achieving a better understanding of the underlying mechanisms of HIV-associated inflammation in the presence of cART is of utmost importance. Extracellular vesicles have emerged as novel actors in intercellular communication, involved in a myriad of physiological and pathological processes, including inflammation. In this review, we will discuss the role of extracellular vesicles in the pathogenesis of HIV infection, with particular emphasis on their role as inducers of chronic inflammation.

18.
Philos Trans R Soc Lond B Biol Sci ; 373(1737)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158309

RESUMO

In the past decade, cell-to-cell communication mediated by exosomes has attracted growing attention from biomedical scientists and physicians, leading to several recent publications in top-tier journals. Exosomes are generally defined as secreted membrane vesicles, or extracellular vesicles (EVs), corresponding to the intraluminal vesicles of late endosomal compartments, which are secreted upon fusion of multi-vesicular endosomes with the cell's plasma membrane. Cells, however, were shown to release other types of EVs, for instance, by direct budding off their plasma membrane. Some of these EVs share with exosomes major biophysical and biochemical characteristics, such as size, density and membrane orientation, which impose difficulties in their efficient separation. Despite frequent claims in the literature, whether exosomes really display more important patho/physiological functions, or are endowed with higher potential as diagnostic or therapeutic tools than other EVs, is not yet convincingly demonstrated. In this opinion article, we describe reasons for this lack of precision knowledge in the current stage of the EV field, we review recently described approaches to overcome these caveats, and we propose ways to improve our knowledge on the respective functions of distinct EVs, which will be crucial for future development of well-designed EV-based clinical applications.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.


Assuntos
Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Microambiente Tumoral/fisiologia , Comunicação Celular , Exossomos/fisiologia , Humanos
19.
Oncoimmunology ; 5(4): e1071008, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27141373

RESUMO

Dendritic cell-derived exosomes (Dex) are small extracellular vesicles secreted by viable dendritic cells. In the two phase-I trials that we conducted using the first generation of Dex (IFN-γ-free) in end-stage cancer, we reported that Dex exerted natural killer (NK) cell effector functions in patients. A second generation of Dex (IFN-γ-Dex) was manufactured with the aim of boosting NK and T cell immune responses. We carried out a phase II clinical trial testing the clinical benefit of IFN-γ-Dex loaded with MHC class I- and class II-restricted cancer antigens as maintenance immunotherapy after induction chemotherapy in patients bearing inoperable non-small cell lung cancer (NSCLC) without tumor progression. The primary endpoint was to observe at least 50% of patients with progression-free survival (PFS) at 4 mo after chemotherapy cessation. Twenty-two patients received IFN-γ-Dex. One patient exhibited a grade three hepatotoxicity. The median time to progression was 2.2 mo and median overall survival (OS) was 15 mo. Seven patients (32%) experienced stabilization of >4 mo. The primary endpoint was not reached. An increase in NKp30-dependent NK cell functions were evidenced in a fraction of these NSCLC patients presenting with defective NKp30 expression. Importantly, MHC class II expression levels of the final IFN-γ-Dex product correlated with expression levels of the NKp30 ligand BAG6 on Dex, and with NKp30-dependent NK functions, the latter being associated with longer progression-free survival. This phase II trial confirmed the capacity of Dex to boost the NK cell arm of antitumor immunity in patients with advanced NSCLC.

20.
Cell ; 164(6): 1226-1232, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26967288

RESUMO

In multicellular organisms, distant cells can exchange information by sending out signals composed of single molecules or, as increasingly exemplified in the literature, via complex packets stuffed with a selection of proteins, lipids, and nucleic acids, called extracellular vesicles (EVs; also known as exosomes and microvesicles, among other names). This Review covers some of the most striking functions described for EV secretion but also presents the limitations on our knowledge of their physiological roles. While there are initial indications that EV-mediated pathways operate in vivo, the actual nature of the EVs involved in these effects still needs to be clarified. Here, we focus on the context of tumor cells and their microenvironment, but similar results and challenges apply to all patho/physiological systems in which EV-mediated communication is proposed to take place.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Animais , Comunicação Celular , Humanos , Neoplasias/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA