Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(12): e0219921, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604216

RESUMO

Pseudorabies virus (PRV) is a porcine alphaherpesvirus and the causative agent of Aujeszky's disease. Successful eradication campaigns against PRV have largely relied on the use of potent PRV vaccines. The live attenuated Bartha strain, which was produced by serial passaging in cell culture, represents one of the hallmark PRV vaccines. Despite the robust protection elicited by Bartha vaccination, very little is known about the immunogenicity of the Bartha strain. Previously, we showed that Bartha-infected epithelial cells trigger plasmacytoid dendritic cells (pDC) to produce much higher levels of type I interferons than cells infected with wild-type PRV. Here, we show that this Bartha-induced pDC hyperactivation extends to other important cytokines, including interleukin-12/23 (IL-12/23) and tumor necrosis factor alpha (TNF-α) but not IL-6. Moreover, Bartha-induced pDC hyperactivation was found to be due to the strongly increased production of extracellular infectious virus (heavy particles [H-particles]) early in infection of epithelial cells, which correlated with a reduced production of noninfectious light particles (L-particles). The Bartha genome is marked by a large deletion in the US region affecting the genes encoding US7 (gI), US8 (gE), US9, and US2. The deletion of the US2 and gE/gI genes was found to be responsible for the observed increase in extracellular virus production by infected epithelial cells and the resulting increased pDC activation. The deletion of gE/gI also suppressed L-particle production. In conclusion, the deletion of US2 and gE/gI in the genome of the PRV vaccine strain Bartha results in the enhanced production of extracellular infectious virus in infected epithelial cells and concomitantly leads to the hyperactivation of pDC. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Here, we report the surprising observation that Bartha-infected epithelial porcine cells rapidly produce increased amounts of extracellular infectious virus compared to wild-type PRV-infected cells, which in turn potently stimulate porcine plasmacytoid dendritic cells (pDC). We found that this phenotype depends on the deletion of the genes encoding US2 and gE/gI. We also found that Bartha-infected cells secrete fewer pDC-inhibiting light particles (L-particles), which appears to be caused mainly by the deletion of the genes encoding gE/gI. These data generate novel insights into the interaction of the successful Bartha vaccine with epithelial cells and pDC and may therefore contribute to the development of vaccines against other (alphaherpes)viruses.


Assuntos
Células Dendríticas , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Células Dendríticas/imunologia , Herpesvirus Suídeo 1/genética , Imunogenicidade da Vacina , Pseudorraiva/prevenção & controle , Vacinas contra Pseudorraiva/genética , Suínos , Doenças dos Suínos/prevenção & controle , Vacinas Atenuadas , Proteínas do Envelope Viral/genética
2.
Vet Res ; 50(1): 110, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856906

RESUMO

Intestinal epithelium functions as a barrier to protect multicellular organisms from the outside world. It consists of epithelial cells closely connected by intercellular junctions, selective gates which control paracellular diffusion of solutes, ions and macromolecules across the epithelium and keep out pathogens. Rotavirus is one of the major enteric viruses causing severe diarrhea in humans and animals. It specifically infects the enterocytes on villi of small intestines. The polarity of rotavirus replication in their target enterocytes and the role of intestinal epithelial integrity were examined in the present study. Treatment with EGTA, a drug that chelates calcium and disrupts the intercellular junctions, (i) significantly enhanced the infection of rotavirus in primary enterocytes, (ii) increased the binding of rotavirus to enterocytes, but (iii) considerably blocked internalization of rotavirus. After internalization, rotavirus was resistant to EGTA treatment. To investigate the polarity of rotavirus infection, the primary enterocytes were cultured in a transwell system and infected with rotavirus at either the apical or the basolateral surface. Rotavirus preferentially infected enterocytes at the basolateral surface. Restriction of infection through apical inoculation was overcome by EGTA treatment. Overall, our findings demonstrate that integrity of the intestinal epithelium is crucial in the host's innate defense against rotavirus infection. In addition, the intercellular receptor is located basolaterally and disruption of intercellular junctions facilitates the binding of rotavirus to their receptor at the basolateral surface.


Assuntos
Enterócitos/virologia , Células Epiteliais/virologia , Mucosa Intestinal/citologia , Rotavirus/classificação , Rotavirus/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/veterinária , Ácido Egtázico/farmacologia , Enterócitos/efeitos dos fármacos , Miofibroblastos/fisiologia , Suínos , Internalização do Vírus , Replicação Viral
3.
Sci Rep ; 8(1): 15195, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315177

RESUMO

A stable culture of primary porcine enterocytes is necessary to study porcine enteric virus replication characteristics. Because the direct cultivation of primary porcine enterocytes is difficult, alternatives have to be considered. As subepithelial myofibroblasts secrete extracellular matrix and growth factors contributing to the attachment, proliferation and differentiation of epithelial cells, co-cultures of primary porcine enterocytes (ileocytes and colonocytes) with myofibroblasts were developed and evaluated for their susceptibility to enteric viruses. First, it was demonstrated that the co-cultured ileocytes and colonocytes were susceptible to an archival rotavirus strain RVA/pig-tc/BEL/RV277/1977/G1P[7] and different other rotavirus genotypes (fecal samples containing G5P[7], G5P[13], G9P[23], G4P[6]). Next, the TGEV Purdue strain infected both ileocytes and colonocytes whereas the Miller strain only infected ileocytes. Last, the PEDV CV777 Vero adapted and non-adapted (fecal suspension) strains could infect co-cultured ileocytes but not colonocytes. The infectivity of the CV777 Vero adapted strain was higher when the cells were cultured without fetal bovine serum and the CV777 fecal suspension only infected the ileocytes cultured without fetal bovine serum. In conclusion, a novel co-culture of porcine enterocytes with myofibroblasts was established, which can be used for the investigation of the replication of enteric viruses.


Assuntos
Técnicas de Cocultura/métodos , Coronavirus/crescimento & desenvolvimento , Enterócitos/virologia , Miofibroblastos/virologia , Rotavirus/crescimento & desenvolvimento , Suínos/virologia , Animais , Colo/patologia , Colo/virologia , Diarreia/virologia , Enterócitos/patologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Fezes/virologia , Genótipo , Íleo/patologia , Íleo/virologia , Cinética , Miofibroblastos/patologia , Rotavirus/genética , Replicação Viral
4.
Virus Res ; 227: 249-260, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27836726

RESUMO

Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission.


Assuntos
Epitopos/imunologia , Produtos do Gene env/genética , Produtos do Gene gag/genética , Vírus da Imunodeficiência Felina/fisiologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/imunologia , Gatos , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Epitopos/química , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Síndrome de Imunodeficiência Adquirida Felina/virologia , Expressão Gênica , Produtos do Gene env/química , Produtos do Gene env/imunologia , Produtos do Gene env/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/imunologia , Produtos do Gene gag/metabolismo , Glicosilação , Leucócitos Mononucleares/imunologia , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Multimerização Proteica
5.
Infect Genet Evol ; 43: 135-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27184192

RESUMO

Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production.


Assuntos
Fezes/virologia , Infecções por Rotavirus/veterinária , Rotavirus/classificação , Doenças dos Suínos/virologia , Proteínas do Core Viral/genética , Animais , Astroviridae/isolamento & purificação , Bélgica , Enterovirus/isolamento & purificação , Heterogeneidade Genética , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Rotavirus/genética , Análise de Sequência de RNA , Suínos
6.
J Gen Virol ; 96(9): 2844-2854, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26067291

RESUMO

The replication cycle of white spot syndrome virus (WSSV) was investigated in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei. The secondary cells formed a confluent monolayer at 24 h post-reseeding, and this monolayer could be maintained for 10 days with a viability of 90 %. Binding of WSSV to cells reached a maximum (73 ± 3 % of cells and 4.84 ± 0.2 virus particles per virus-binding cell) at 120 min at 4 °C. WSSV entered cells by endocytosis. The co-localization of WSSV and early endosomes was observed starting from 30 min post-inoculation (p.i.). Double indirect immunofluorescence staining showed that all cell-bound WSSV particles entered these cells in the period between 0 and 60 min p.i. and that the uncoating of WSSV occurred in the same period. After 1 h inoculation at 27 °C, the WSSV nucleocapsid protein VP664 and envelope protein VP28 started to be synthesized in the cytoplasm from 1 and 3 h p.i., and were transported into nuclei from 3 and 6 h p.i., respectively. The percentage of cells that were VP664- and VP28-positive in their nuclei peaked (50 ± 4 %) at 12 h p.i. Quantitative PCR showed that WSSV DNA started to be synthesized from 6 h p.i. In vivo titration of the supernatants showed that the progeny WSSV were released from 12 h p.i. and peaked at 18 h p.i. In conclusion, the secondary cell cultures from the lymphoid organ were proven to be ideal for examination of the replication cycle of WSSV.


Assuntos
Técnicas de Cultura de Células/métodos , Penaeidae/virologia , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Técnicas de Cultura de Células/instrumentação , Núcleo Celular/virologia , Tecido Linfoide/virologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética
7.
J Gen Virol ; 95(Pt 9): 1911-1918, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24876305

RESUMO

To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus-receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus-receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections.


Assuntos
Coronavirus Felino/imunologia , Lactose/análogos & derivados , Neuraminidase/farmacologia , Receptores Virais/antagonistas & inibidores , Ácidos Siálicos/metabolismo , Ligação Viral/efeitos dos fármacos , Animais , Doenças do Gato/virologia , Gatos , Linhagem Celular , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Peritonite Infecciosa Felina/virologia , Fetuínas/farmacologia , Mucinas Gástricas/farmacologia , Mucosa Intestinal/virologia , Lactoferrina/farmacologia , Lactose/metabolismo , Lactose/farmacologia , Ácidos Siálicos/farmacologia
8.
Vet Res ; 44: 71, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23964891

RESUMO

Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79-1683 and WSU 79-1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79-1683 still replicated significantly more efficient compared to FCoV WSU 79-1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats.


Assuntos
Antígenos Virais/biossíntese , Técnicas de Cultura de Células/métodos , Colo/virologia , Coronavirus Felino/fisiologia , Peritonite Infecciosa Felina/virologia , Íleo/virologia , Animais , Gatos , Técnicas de Cultura de Células/veterinária , Linhagem Celular , Coronavirus Felino/imunologia , Coronavirus Felino/patogenicidade , Células Epiteliais/virologia , Fezes/virologia , Reação em Cadeia da Polimerase/veterinária , RNA/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA