Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 21(4): 455-466.e4, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28407483

RESUMO

Levels of inflammatory mediators in circulation are known to increase with age, but the underlying cause of this age-associated inflammation is debated. We find that, when maintained under germ-free conditions, mice do not display an age-related increase in circulating pro-inflammatory cytokine levels. A higher proportion of germ-free mice live to 600 days than their conventional counterparts, and macrophages derived from aged germ-free mice maintain anti-microbial activity. Co-housing germ-free mice with old, but not young, conventionally raised mice increases pro-inflammatory cytokines in the blood. In tumor necrosis factor (TNF)-deficient mice, which are protected from age-associated inflammation, age-related microbiota changes are not observed. Furthermore, age-associated microbiota changes can be reversed by reducing TNF using anti-TNF therapy. These data suggest that aging-associated microbiota promote inflammation and that reversing these age-related microbiota changes represents a potential strategy for reducing age-associated inflammation and the accompanying morbidity.


Assuntos
Disbiose/complicações , Disbiose/imunologia , Inflamação/patologia , Intestinos/fisiopatologia , Macrófagos/imunologia , Permeabilidade , Fatores Etários , Animais , Camundongos
2.
PLoS Pathog ; 12(1): e1005368, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26766566

RESUMO

Monocyte phenotype and output changes with age, but why this occurs and how it impacts anti-bacterial immunity are not clear. We found that, in both humans and mice, circulating monocyte phenotype and function was altered with age due to increasing levels of TNF in the circulation that occur as part of the aging process. Ly6C+ monocytes from old (18-22 mo) mice and CD14+CD16+ intermediate/inflammatory monocytes from older adults also contributed to this "age-associated inflammation" as they produced more of the inflammatory cytokines IL6 and TNF in the steady state and when stimulated with bacterial products. Using an aged mouse model of pneumococcal colonization we found that chronic exposure to TNF with age altered the maturity of circulating monocytes, as measured by F4/80 expression, and this decrease in monocyte maturation was directly linked to susceptibility to infection. Ly6C+ monocytes from old mice had higher levels of CCR2 expression, which promoted premature egress from the bone marrow when challenged with Streptococcus pneumoniae. Although Ly6C+ monocyte recruitment and TNF levels in the blood and nasopharnyx were higher in old mice during S. pneumoniae colonization, bacterial clearance was impaired. Counterintuitively, elevated TNF and excessive monocyte recruitment in old mice contributed to impaired anti-pneumococcal immunity since bacterial clearance was improved upon pharmacological reduction of TNF or Ly6C+ monocytes, which were the major producers of TNF. Thus, with age TNF impairs inflammatory monocyte development, function and promotes premature egress, which contribute to systemic inflammation and is ultimately detrimental to anti-pneumococcal immunity.


Assuntos
Envelhecimento/imunologia , Monócitos/imunologia , Infecções Pneumocócicas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Streptococcus pneumoniae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA