Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8073, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580653

RESUMO

The fishing cat, Prionailurus viverrinus, faces a population decline, increasing the importance of maintaining healthy zoo populations. Unfortunately, zoo-managed individuals currently face a high prevalence of transitional cell carcinoma (TCC), a form of bladder cancer. To investigate the genetics of inherited diseases among captive fishing cats, we present a chromosome-scale assembly, generate the pedigree of the zoo-managed population, reaffirm the close genetic relationship with the Asian leopard cat (Prionailurus bengalensis), and identify 7.4 million single nucleotide variants (SNVs) and 23,432 structural variants (SVs) from whole genome sequencing (WGS) data of healthy and TCC cats. Only BRCA2 was found to have a high recurrent number of missense mutations in fishing cats diagnosed with TCC when compared to inherited human cancer risk variants. These new fishing cat genomic resources will aid conservation efforts to improve their genetic fitness and enhance the comparative study of feline genomes.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Gatos , Animais , Humanos , Genoma/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Genômica , Células Germinativas/patologia
2.
Nat Commun ; 14(1): 6364, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848431

RESUMO

Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.


Assuntos
Marsupiais , Animais , Austrália , Nova Zelândia/epidemiologia
3.
Nature ; 611(7936): 519-531, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261518

RESUMO

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Assuntos
Mapeamento Cromossômico , Diploide , Genoma Humano , Genômica , Humanos , Mapeamento Cromossômico/normas , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Padrões de Referência , Genômica/métodos , Genômica/normas , Cromossomos Humanos/genética , Variação Genética/genética
4.
Nature ; 585(7823): 79-84, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663838

RESUMO

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


Assuntos
Cromossomos Humanos X/genética , Genoma Humano/genética , Telômero/genética , Centrômero/genética , Ilhas de CpG/genética , Metilação de DNA , DNA Satélite/genética , Feminino , Humanos , Mola Hidatiforme/genética , Masculino , Gravidez , Reprodutibilidade dos Testes , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA