Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Pediatr Res ; 91(1): 129-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465872

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a major challenge for premature infants in neonatal intensive care units and efforts toward the search for indicators that could be used to predict the development of the disease have given limited results until now. METHODS: In this study, stools from 132 very low birth weight infants were collected daily in the context of a multi-center prospective study aimed at investigating the potential of fecal biomarkers for NEC prediction. Eight infants (~6%) received a stage 3 NEC diagnosis. Their stools collected up to 10 days before diagnosis were included and matched with 14 non-NEC controls and tested by ELISA for the quantitation of eight biomarkers. RESULTS: Biomarkers were evaluated in all available stool samples leading to the identification of lipocalin-2 and calprotectin as the two most reliable predicting markers over the 10-day period prior to NEC development. Pooling the data for each infant confirmed the significance of lipocalin-2 and calprotectin, individually and in combination 1 week in advance of the NEC clinical diagnosis. CONCLUSIONS: The lipocalin-2 and calprotectin tandem represents a significant biomarker signature for predicting NEC development. Although not yet fulfilling the "perfect biomarker" criteria, it represents a first step toward it. IMPACT: Stool biomarkers can be used to predict NEC development in very low birth weight infants more than a week before the diagnosis. LCN2 was identified as a new robust biomarker for predicting NEC development, which used in conjunction with CALPRO, allows the identification of more than half of the cases that will develop NEC in very low birth weight infants. Combining more stool markers with the LCN2/CALPRO tandem such as PGE2 can further improve the algorithm for the prediction of NEC development.


Assuntos
Enterocolite Necrosante/diagnóstico , Fezes/química , Recém-Nascido Prematuro , Complexo Antígeno L1 Leucocitário/metabolismo , Lipocalina-2/metabolismo , Biomarcadores/metabolismo , Enterocolite Necrosante/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino
3.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089346

RESUMO

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Ciclinas/metabolismo , Homeostase , Magnésio/metabolismo , Fatores de Ribosilação do ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilação , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica
4.
Nat Commun ; 11(1): 3586, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681075

RESUMO

Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Adesões Focais/genética , Humanos , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/fisiopatologia , Paxilina/genética , Paxilina/metabolismo , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Receptor Tirosina Quinase Axl
5.
Cell Rep ; 23(5): 1476-1490, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719259

RESUMO

AXL is activated by its ligand GAS6 and is expressed in triple-negative breast cancer cells. In the current study, we report AXL expression in HER2-positive (HER2+) breast cancers where it correlates with poor patient survival. Using murine models of HER2+ breast cancer, Axl, but not its ligand Gas6, was found to be essential for metastasis. We determined that AXL is required for intravasation, extravasation, and growth at the metastatic site. We found that AXL is expressed in HER2+ cancers displaying epithelial-to-mesenchymal transition (EMT) signatures where it contributes to sustain EMT. Interfering with AXL in a patient-derived xenograft (PDX) impaired transforming growth factor ß (TGF-ß)-induced cell invasion. Last, pharmacological inhibition of AXL specifically decreased the metastatic burden of mice developing HER2+ breast cancer. Our data identify AXL as a potential anti-metastatic co-therapeutic target for the treatment of HER2+ breast cancers.


Assuntos
Neoplasias da Mama/mortalidade , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor ErbB-2/genética , Receptor Tirosina Quinase Axl
6.
Cell Rep ; 22(4): 1016-1030, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386124

RESUMO

Cancer cells exploit the epithelial-to-mesenchymal transition (EMT) program to become metastatic. Cytoskeletal regulators are required in mesenchymal cells where they promote EMT and EMT-induced migration. In a search for regulators of metastasis, we conducted shRNA screens targeting the microtubule plus-end tracking proteins (+TIPs). We show that the +TIP ACF7 is essential both for the maintenance of the EMT program and to promote migration. We find that the E3 ubiquitin ligase HectD1 promotes ACF7-proteasome-mediated degradation. Depletion of HectD1 stabilized ACF7, and this enhanced EMT and migration. Decreased HectD1 expression increased metastases in mouse models and conferred increased resistance to the cytotoxic drug cisplatin. A retrospective analysis of biopsies from breast cancer patients also reveals a correlation between higher ACF7 or lower HectD1 expression with poor clinical outcomes. Together, these results suggest that the control of ACF7 levels by HectD1 modulates EMT and the efficiency of metastasis.


Assuntos
Proteínas dos Microfilamentos/genética , Ubiquitina-Proteína Ligases/genética , Animais , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Transdução de Sinais
7.
BMC Med Genomics ; 9: 6, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801768

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease experienced by premature infants in neonatal intensive care units. The challenge for neonatologists is to detect early clinical manifestations of NEC. One strategy would be to identify specific markers that could be used as early diagnostic tools to identify preterm infants most at risk of developing NEC or in the event of a diagnostic dilemma of suspected disease. As a first step in this direction, we sought to determine the specific gene expression profile of NEC. METHODS: Deep sequencing (RNA-Seq) was used to establish the gene expression profiles in ileal samples obtained from preterm infants diagnosed with NEC and non-NEC conditions. Data were analyzed with Ingenuity Pathway Analysis and ToppCluster softwares. RESULTS: Data analysis indicated that the most significant functional pathways over-represented in NEC neonates were associated with immune functions, such as altered T and B cell signaling, B cell development, and the role of pattern recognition receptors for bacteria and viruses. Among the genes that were strongly modulated in neonates with NEC, we observed a significant degree of similarity when compared with those reported in Crohn's disease, a chronic inflammatory bowel disease. CONCLUSIONS: Gene expression profile analysis revealed a predominantly altered immune response in the intestine of NEC neonates. Moreover, comparative analysis between NEC and Crohn's disease gene expression repertoires revealed a surprisingly high degree of similarity between these two conditions suggesting a new avenue for identifying NEC biomarkers.


Assuntos
Doença de Crohn/complicações , Doença de Crohn/genética , Enterocolite Necrosante/complicações , Enterocolite Necrosante/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Antivirais/metabolismo , Feminino , Humanos , Imunidade Inata/genética , Recém-Nascido , Masculino , Gravidez , Reprodutibilidade dos Testes , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA