Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503349

RESUMO

Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 µM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.


Assuntos
Apoptose , Células Epiteliais , Pulmão , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células A549 , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos de Manganês , Manganês/toxicidade , Linhagem Celular , Cloretos/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga
2.
Free Radic Biol Med ; 205: 234-243, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37328018

RESUMO

PURPOSE: To investigate the role of NRF2 signalling in conferring superior prognosis in patients with HPV positive (HPV+ve) head & neck squamous cell carcinomas (HNSCC) compared to HPV negative (HPV-ve) HNSCC and develop molecular markers for selection of HPV+ve HNSCC patients for treatment de-escalation trials. METHODS: NRF2 activity (NRF2, KEAP1, and NRF2-transcriptional targets), p16, and p53 levels between HPV+ve HNSCC and HPV-ve HNSCC in prospective and retrospective tumor samples as well as from TCGA database were compared. Cancer cells were transfected with HPV-E6/E7 plasmid to elucidate if HPV infection represses NRF2 activity and sensitizes to chemo-radiotherapy. RESULTS: Prospective analysis revealed a marked reduction in expression of NRF2, and its downstream genes in HPV+ve tumors compared to HPV-ve tumors. A retrospective analysis by IHC revealed significantly lower NQO1 in p16high tumors compared to p16low tumors and the NQO1 expression correlated negatively with p16 and positively with p53. Analysis of the TCGA database confirmed low constitutive NRF2 activity in HPV+ve HNSCC compared to HPV-ve HNSCC and revealed that HPV+ve HNSCC patients with 'low NQO1' expression showed better overall survival compared to HPV+ve HNSCC patients with 'high NQO1' expression. Ectopic expression of HPV-E6/E7 plasmid in various cancer cells repressed constitutive NRF2 activity, reduced total GSH, increased ROS levels, and sensitized the cancer cells to cisplatin and ionizing radiation. CONCLUSION: Low constitutive NRF2 activity contributes to better prognosis of HPV+ve HNSCC patients. Co-expression of p16high, NQO1low, and p53low could serve as a predictive biomarker for the selection of HPV + ve HNSCC patients for de-escalation trials.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Papillomavirus Humano , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Carcinoma de Células Escamosas/metabolismo , Estudos Retrospectivos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo
3.
Food Funct ; 14(10): 4734-4751, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37114361

RESUMO

Pharmacological activation of nuclear factor erythroid 2 related factor 2 (NRF2) provides protection against several environmental diseases by inhibiting oxidative and inflammatory injury. Besides high in protein and minerals, Moringa oleifera leaves contain several bioactive compounds, predominantly isothiocyanate moringin and polyphenols, which are potent inducers of NRF2. Hence, M. oleifera leaves represent a valuable food source that could be developed as a functional food for targeting NRF2 signaling. In the current study, we have developed a palatable M. oleifera leaf preparation (henceforth referred as ME-D) that showed reproducibly a high potential to activate NRF2. Treatment of BEAS-2B cells with ME-D significantly increased NRF2-regulated antioxidant genes (NQO1, HMOX1) and total GSH levels. In the presence of brusatol (a NRF2 inhibitor), ME-D-induced increase in NQO1 expression was significantly diminished. Pre-treatment of cells with ME-D mitigated reactive oxygen species, lipid peroxidation and cytotoxicity induced by pro-oxidants. Furthermore, ME-D pre-treatment markedly inhibited nitric oxide production, secretory IL-6 and TNF-α levels, and transcriptional expression of Nos2, Il-6, and Tnf-α in macrophages exposed to lipopolysaccharide. Biochemical profiling by LC-HRMS revealed glucomoringin, moringin, and several polyphenols in ME-D. Oral administration of ME-D significantly increased NRF2-regulated antioxidant genes in the small intestine, liver, and lungs. Lastly, prophylactic administration of ME-D significantly mitigated lung inflammation in mice exposed to particulate matter for 3-days or 3-months. In conclusion, we have developed a pharmacologically active standardized palatable preparation of M. oleifera leaves as a functional food to activate NRF2 signaling, which can be consumed as a beverage (hot soup) or freeze-dried powder for reducing the risk from environmental respiratory disease.


Assuntos
Antioxidantes , Moringa oleifera , Camundongos , Animais , Antioxidantes/farmacologia , Moringa oleifera/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6 , Alimento Funcional , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio
4.
Biomedicines ; 9(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34572304

RESUMO

Nuclear factor erythroid-2 related factor-2 (Nrf2) is an oxidative stress-response transcriptional activator that promotes carcinogenesis through metabolic reprogramming, tumor promoting inflammation, and therapeutic resistance. However, the extension of Nrf2 expression and its involvement in regulation of breast cancer (BC) responses to chemotherapy remain largely unclear. This study determined the expression of Nrf2 in BC tissues (n = 46) and cell lines (MDA-MB-453, MCF-7, MDA-MB-231, MDA-MB-468) with diverse phenotypes. Immunohistochemical (IHC)analysis indicated lower Nrf2 expression in normal breast tissues, compared to BC samples, although the difference was not found to be significant. However, pharmacological inhibition and siRNA-induced downregulation of Nrf2 were marked by decreased activity of NADPH quinone oxidoreductase 1 (NQO1), a direct target of Nrf2. Silenced or inhibited Nrf2 signaling resulted in reduced BC proliferation and migration, cell cycle arrest, activation of apoptosis, and sensitization of BC cells to cisplatin in vitro. Ehrlich Ascites Carcinoma (EAC) cells demonstrated elevated levels of Nrf2 and were further tested in experimental mouse models in vivo. Intraperitoneal administration of pharmacological Nrf2 inhibitor brusatol slowed tumor cell growth. Brusatol increased lymphocyte trafficking towards engrafted tumor tissue in vivo, suggesting activation of anti-cancer effects in tumor microenvironment. Further large-scale BC testing is needed to confirm Nrf2 marker and therapeutic capacities for chemo sensitization in drug resistant and advanced tumors.

5.
Front Genet ; 12: 658862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173760

RESUMO

Macrophages exhibit high plasticity to achieve their roles in maintaining tissue homeostasis, innate immunity, tissue repair and regeneration. Therefore, macrophages are being evaluated for cell-based therapeutics against inflammatory disorders and cancer. To overcome the limitation related to expansion of primary macrophages and cell numbers, human pluripotent stem cell (hPSC)-derived macrophages are considered as an alternative source of primary macrophages for clinical application. However, the quality of hPSC-derived macrophages with respect to the biological homogeneity remains still unclear. We previously reported a technique to produce hPSC-derived macrophages referred to as iMACs, which is amenable for scale-up. In this study, we have evaluated the biological homogeneity of the iMACs using a transcriptome dataset of 6,230 iMACs obtained by single-cell RNA sequencing. The dataset provides a valuable genomic profile for understanding the molecular characteristics of hPSC-derived macrophage cells and provide a measurement of transcriptomic homogeneity. Our study highlights the usefulness of single cell RNA-seq data in quality control of the cell-based therapy products.

6.
Inflammopharmacology ; 28(5): 1301-1314, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32372165

RESUMO

Pulmonary fibrosis (PF) is a chronic and irreversible scarring disease in the lung with limited treatment options. Therefore, it is critical to identify new therapeutic options. This study was undertaken to identify the effects of tannic acid (TA), a naturally occurring dietary polyphenol, in a mouse model of PF. Bleomycin (BLM) was intratracheally administered to induce PF. Administration of TA significantly reduced BLM-induced histological alterations, inflammatory cell infiltration and the levels of various inflammatory mediators (nitric oxide, leukotriene B4 and cytokines). Additionally, treatment with TA also impaired BLM-mediated increases in pro-fibrotic (transforming growth factor-ß1) and fibrotic markers (alpha-smooth muscle actin, vimentin, collagen 1 alpha and fibronectin) expression. Further investigation indicated that BLM-induced phosphorylation of Erk1/2 (extracellular signal-regulated kinases 1 and 2) in lungs was suppressed by TA treatment. Findings of this study suggest that TA has the potential to mitigate PF through inhibiting the inflammatory response and fibrotic process in lungs and that TA might be useful for the treatment of PF in clinical practice.


Assuntos
Anti-Inflamatórios/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Taninos/farmacologia , Animais , Bleomicina , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia
7.
Crit Rev Oncol Hematol ; 148: 102885, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32062315

RESUMO

Patients with HPV associated (HPV+ve) head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal cancer, show better treatment response, higher survival rates, and lower risks of recurrence as compared to HPV-ve HNSCC patients. Despite increased sensitivity to treatment modality, HPV+ve HNSCC patients are subjected to the same intensive anti-cancer therapy as HPV-ve HNSCC patients and thus subjecting them to unwarranted long-term toxicity. To identify predictive biomarkers for risk-stratification, we have analyzed the mutational spectrum, and the evidence suggests that gain-of-function mutations in the NRF2 pathway are highly prevalent in HPV-ve HNSCC. At the same time, it is rare in HPV+ve HNSCC tumors. We have reviewed the importance of gain-of-NRF2 function and loss of p53 in the prognosis of HNSCC patients and discussed a predictive scoring system using a combination of HPV status (p16), NRF2 pathway and p53 to stratify HPV+ve HNSCC into good versus poor responders, which could immensely help in guiding future de-escalation treatment approaches in patients with HPV+ve HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Neoplasias de Cabeça e Pescoço/genética , Fator 2 Relacionado a NF-E2/genética , Papillomaviridae/genética , Proteína Supressora de Tumor p53/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/análise , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/genética , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Recidiva Local de Neoplasia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Proteína Supressora de Tumor p53/metabolismo
8.
Stem Cell Reports ; 13(6): 980-991, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31680058

RESUMO

A major limitation in anti-tuberculosis drug screening is the lack of reliable and scalable models for homogeneous human primary macrophage cells of non-cancer origin. Here we report a modified protocol for generating homogeneous populations of macrophage-like cells from human embryonic stem cells. The induced macrophages, referred to as iMACs, presented similar transcriptomic profiles and characteristic immunological features of classical macrophages and were permissive to viral and bacterial infection, in particular Mycobacterium tuberculosis (Mtb). More importantly, iMAC production was amenable to scale up. To evaluate iMAC efficiency in high-throughput anti-tuberculosis drug screening, we performed a phenotypic screening against intracellular Mtb, involving a library of 3,716 compounds that included FDA-approved drugs and other bioactive compounds. Our primary screen identified 120 hits, which were validated in a secondary screen by dose-intracellular and -extracellular Mtb assays. Our confirmatory studies identified a novel anti-Mtb compound, 10-DEBC, also showing activity against drug-resistant strains.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias Humanas/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Fagocitose/imunologia , Bibliotecas de Moléculas Pequenas
9.
J Cell Physiol ; 234(5): 6463-6476, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30246289

RESUMO

Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) remain a major cause of morbidity and mortality in critically ill patients, and no specific therapies are still available to control the mortality rate. Thus, we explored the preventive and therapeutic effects of tannic acid (TA), a natural polyphenol in the context of ALI. We used in vivo and in vitro models, respectively, using lipopolysaccharide (LPS) to induce ALI in mice and exposing J774 and BEAS-2B cells to LPS. In both preventive and therapeutic approaches, TA attenuated LPS-induced histopathological alterations, lipid peroxidation, lung permeability, infiltration of inflammatory cells, and the expression of proinflammatory mediators. In addition, in-vitro study showed that TA treatment could reduce the expression of proinflammatory mediators. Further studies revealed that TA-dampened inflammatory responses by downregulating the LPS-induced toll-like receptor 4 (TLR4) expression and inhibiting extracellular-signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, cells treated with the inhibitors of ERK1/2 (PD98059) and p38 (SB203580) mitigated the expression of cytokines induced by LPS, thus suggesting that ERK1/2 and p38 activity are required for the inflammatory response. In conclusion, TA could attenuate LPS-induced inflammation and may be a potential therapeutic agent for ALI-associated inflammation in clinical settings.


Assuntos
Lesão Pulmonar Aguda/patologia , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Taninos/farmacologia , Receptor 4 Toll-Like/biossíntese , Lesão Pulmonar Aguda/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos
10.
Clin Rev Allergy Immunol ; 54(3): 480-492, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27677501

RESUMO

Lack of markers of subclinical disease state and clinical phenotype other than pulmonary function test has made the diagnosis and interventions of environmental respiratory diseases a major challenge. MicroRNAs (miRNAs), small non-coding single stranded RNAs, have emerged as potential disease-modifier in various environmental respiratory diseases. They can also be found in various body fluids and are remarkably stable. Because of their high stability, disease-specific expression, and the ease to detect and quantify them have raised the potential of miRNAs in body fluids to be useful clinical diagnostic biomarkers for lung disease phenotyping. In the present review, we provide a comprehensive overview of progress made in identifying miRNAs in various body fluids including blood, serum, plasma, bronchoalveolar lavage (BAL) fluid, and sputum as biomarkers for a wide range of human respiratory diseases such as acute lung injury/acute respiratory distress syndrome (ALI/ARDS), idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and asthma. Finally, we discuss several challenges remain to be concerned and suggest few disease-specific and non-specific miRNAs to become part of future clinical practice.


Assuntos
Asma/genética , MicroRNA Circulante , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Síndrome do Desconforto Respiratório/genética , Asma/diagnóstico , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Espaço Extracelular , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Síndrome do Desconforto Respiratório/diagnóstico
11.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L138-L153, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408365

RESUMO

Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia.


Assuntos
Resistência à Doença , Fatores Imunológicos/farmacologia , Influenza Humana/complicações , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/imunologia , Receptores Imunológicos/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Líquido da Lavagem Broncoalveolar , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon gama/farmacologia , Isotiocianatos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infecções por Orthomyxoviridae/complicações , Fagocitose/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Análise de Sequência de RNA , Transdução de Sinais , Staphylococcus aureus/efeitos dos fármacos , Sulfóxidos , Regulação para Cima/genética
12.
Proc Natl Acad Sci U S A ; 112(50): E6927-36, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621751

RESUMO

Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell-cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.


Assuntos
Isquemia/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Neurônios/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Semaforinas/metabolismo , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Isquemia/patologia , Camundongos , Neovascularização Patológica , Receptores Notch/metabolismo , Regeneração , Vasos Retinianos/patologia , Transdução de Sinais
13.
PLoS One ; 10(2): e0116861, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25651083

RESUMO

Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7 x 10(11) free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections.


Assuntos
Pulmão/microbiologia , Pulmão/virologia , Nicotina/efeitos adversos , Nicotina/química , Fumar/efeitos adversos , Animais , Radicais Livres/análise , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Streptococcus pneumoniae/fisiologia , Carga Viral/efeitos dos fármacos , Volatilização
14.
J Clin Invest ; 124(2): 730-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463449

RESUMO

A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2-related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2'-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure.


Assuntos
Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Linhagem da Célula , Chalconas/química , Proteínas do Citoesqueleto/genética , Granulócitos/efeitos da radiação , Proteína 1 Associada a ECH Semelhante a Kelch , Linfócitos/efeitos da radiação , Megacariócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/efeitos da radiação , Espécies Reativas de Oxigênio , Transdução de Sinais
15.
Bone Res ; 2: 14033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26273528

RESUMO

A large body of literature suggests that bone metabolism is susceptible to the ill effects of reactive species that accumulate in the body and cause cellular dysfunction. One of the body's front lines in defense against such damage is the transcription factor, Nrf2. This transcription factor regulates a plethora of antioxidant and cellular defense pathways to protect cells from such damage. Despite the breadth of knowledge of both the function of Nrf2 and the effects of reactive species in bone metabolism, the direct role of Nrf2 in skeletal biology has yet to be thoroughly examined. Thus, in the current study, we have examined the role of Nrf2 in postnatal bone metabolism in mice. Mice lacking Nrf2 (Nrf2(-/-)) exhibited a marked deficit in postnatal bone acquisition, which was most severe at 3 weeks of age when osteoblast numbers were 12-fold less than observed in control animals. While primary osteoblasts from Nrf2(-/-) mice functioned normally in vitro, the colony forming capacity of bone marrow stromal cells (BMSCs) from these mice was significantly reduced compared to controls. This defect could be rescued through treatment with the radical scavenger N-acetyl cysteine (NAC), suggesting that increased reactive species stress might impair early osteoblastogenesis in BMSCs and lead to the failure of bone acquisition observed in Nrf2(-/-) animals. Taken together, these studies suggest Nrf2 represents a key pathway in regulating bone metabolism, which may provide future therapeutic targets to treat osteoporosis.

16.
Proc Natl Acad Sci U S A ; 110(41): E3910-8, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062466

RESUMO

Angiogenesis, in which new blood vessels form via endothelial cell (EC) sprouting from existing vessels, is a critical event in embryonic development and multiple disease processes. Many insights have been made into key EC receptors and ligands/growth factors that govern sprouting angiogenesis, but intracellular molecular mechanisms of this process are not well understood. NF-E2-related factor 2 (Nrf2) is a transcription factor well-known for regulating the stress response in multiple pathologic settings, but its role in development is less appreciated. Here, we show that Nrf2 is increased and activated during vascular development. Global deletion of Nrf2 resulted in reduction of vascular density as well as EC sprouting. This was also observed with specific deletion of Nrf2 in ECs, but not with deletion of Nrf2 in the surrounding nonvascular tissue. Nrf2 deletion resulted in increased delta-like ligand 4 (Dll4) expression and Notch activity in ECs. Blockade of Dll4 or Notch signaling restored the vascular phenotype in Nrf2 KOs. Constitutive activation of endothelial Nrf2 enhanced EC sprouting and vascularization by suppression of Dll4/Notch signaling in vivo and in vitro. Nrf2 activation in ECs suppressed Dll4 expression under normoxia and hypoxia and inhibited Dll4-induced Notch signaling. Activation of Nrf2 blocked VEGF induction of VEGFR2-PI3K/Akt and downregulated HIF-2α in ECs, which may serve as important mechanisms for Nrf2 inhibition of Dll4 and Notch signaling. Our data reveal a function for Nrf2 in promoting the angiogenic sprouting phenotype in vascular ECs.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/fisiologia , Vasos Retinianos/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Bromodesoxiuridina , Proteínas de Ligação ao Cálcio , Crioultramicrotomia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdissecção e Captura a Laser , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Notch/metabolismo , Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Biochem Biophys Res Commun ; 426(2): 253-9, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22935414

RESUMO

Patients with COPD are associated with poor pulmonary anti-bacterial innate defenses, which increase the risk for frequent acute exacerbations caused by bacterial infection. Despite elevated numbers of phagocytes (macrophages and neutrophils), airways of patients with COPD show stable bacterial colonization. A defect in the phagocytic ability of alveolar macrophages (AMs) is one of the primary reasons for failure to clear the invading bacteria in airways of smokers and COPD patients and also in mice exposed to cigarette smoke (CS). Oxidative stress, as a result of CS exposure is implicated; however, the factors or mediators that inhibit phagocytic activity of AMs in lungs of smokers remain unclear. In the current study, we provide evidence that accumulation of oxidized phospholipids (Ox-PLs) mediate inhibition of phagocytic function of AMs in CS-exposed mice. Mice exposed to 6months of CS showed impaired bacterial phagocytosis and clearance by AMs and elevated levels of Ox-PLs in bronchoalveolar lavage fluid (BALF), compared to mice exposed to room air. Intratracheal instillation of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OX-PAPC) inhibited phagocytic activity of AMs and impaired pulmonary bacterial clearance in mice. In vitro studies demonstrated that exposure of J774 macrophages to OX-PAPC inhibited bacterial phagocytosis and clearance. However, pre-treatment of OX-PAPC with the monoclonal antibody EO6, which specifically binds to oxidized phospholipid but not native phospholipid, abolished OX-PAPC induced inhibition of bacterial phagocytosis and clearance. Incubation of BALF retrieved from CS-exposed mice impaired bacterial phagocytosis by J774 macrophages, which was abolished by pre-treatment of BALF with the EO6 antibody. In conclusion, our study shows that Ox-PLs generated following chronic CS exposure could play a crucial role in inhibiting phagocytic function of AMs and thus impair pulmonary anti-bacterial innate defenses in CS-exposed mice. Therapeutic approaches that augment pulmonary antioxidant defenses could be beneficial in reducing oxidative stress-driven impairment of phagocytosis by AMs in smokers and COPD patients.


Assuntos
Infecções Bacterianas/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Estresse Oxidativo/imunologia , Fosfolipídeos/imunologia , Fumaça , Fumar/imunologia , Animais , Anticorpos Monoclonais/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Exposição por Inalação , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Fosfatidilcolinas/imunologia , Fosfatidilcolinas/farmacologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia
18.
J Carcinog ; 11: 8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919281

RESUMO

BACKGROUND: Sulforaphane (SFN), an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), is a promising chemopreventive agent which is undergoing clinical trial for several diseases. Studies have indicated that there is gain of Nrf2 function in lung cancer and other solid tumors because of mutations in the inhibitor Kelch-like ECH-associated protein 1 (Keap1). More recently, several oncogenes have been shown to activate Nrf2 signaling as the main prosurvival pathway mediating ROS detoxification, senescence evasion, and neoplastic transformation. Thus, it is important to determine if there is any risk of enhanced lung tumorigenesis associated with prolonged administration of SFN using mouse models of cancer. MATERIALS AND METHODS: We evaluated the effect of prolonged SFN treatment on oncogenic K-ras (K-ras(LSL-G12D))-driven lung tumorigenesis. One week post mutant-K-ras expression, mice were treated with SFN (0.5 mg, 5 d/wk) for 3 months by means of a nebulizer. Fourteen weeks after mutant K-ras expression (K-ras(LSL-G12D)), mice were sacrificed, and lung sections were screened for neoplastic foci. Expression of Nrf2-dependent genes was measured using real time RT-PCR. We also determined the effect of prolonged SFN treatment on the growth of preclinical xenograft models using human A549 (with mutant K-ras and Keap1 allele) and H1975 [with mutant epidermal growth factor receptor (EGFR) allele] nonsmall cell lung cancer cells. RESULTS: Systemic SFN administration did not promote the growth of K-ras(LSL-G12D)-induced lung tumors and had no significant effect on the growth of A549 and H1975 established tumor xenografts in nude mice. Interestingly, localized delivery of SFN significantly attenuated the growth of A549 tumors in nude mice, suggesting an Nrf2-independent antitumorigenic activity of SFN. CONCLUSIONS: Our results demonstrate that prolonged SFN treatment does not promote lung tumorigenesis in various mouse models of lung cancer.

19.
ISRN Oncol ; 2012: 641246, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685674

RESUMO

12-O-tetradecanoylphorbol 13-acetate (TPA) induces the differentiation of human myeloid ML-1 cells to macrophages. In the current study, the expression, responsiveness, and regulation of toll-like receptors (TLRs) in TPA-induced ML-1-derived macrophages were investigated. We have found that TPA-induced differentiation of ML-1 cells was accompanied by the upregulation of TLR1, TLR2, TLR4, and CD14 expression at both the mRNA and protein levels. Interestingly, TLR1 and TLR4 protein expression on ML-1 cells could be blocked by pretreatment with U0126, suggesting the role of an Erk1/2-induced differentiation signal in this process. In addition, the expression of IRAK-2, a key member of the TLR/IRAK-2/NF-κB-dependent signaling cascade was also induced in response to TPA. Accordingly, we demonstrated an increased cellular release of inflammatory cytokines (TNF-α and various interleukins) upon stimulation with LPS and LTA ligands for TLR4 and TLR2, respectively. Furthermore, using luminol-dependent chemiluminescence, addition of LPS and LTA induces a sustained DPI-inhibitable generation of reactive oxygen species (ROS) by the differentiated ML-1 cells. Together, these data suggest that the increase in the responsiveness of TPA-treated ML-1 cells to LPS and LTA occurs in response to the upregulation of their respective receptors as well as an induction of the IRAK-2 gene expression.

20.
Proc Am Thorac Soc ; 9(2): 47-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22550241

RESUMO

A growing body of evidence indicates that oxidative stress plays a central role in the progression of chronic obstructive pulmonary disease (COPD). Chronic oxidative stress caused by cigarette smoke generates damage-associated molecular patterns (DAMPs), such as oxidatively or nitrosatively modified proteins and extracellular matrix fragments, which induce abnormal airway inflammation by activating innate and adaptive immune responses. Furthermore, oxidative stress-induced histone deacetylase 2 (HDAC2) inactivity is implicated in amplifying inflammatory responses and corticosteroid resistance in COPD. Oxidative stress also mediates disruption of innate immune defenses, which is associated with acute exacerbation of COPD. Host defense transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates a multifaceted cytoprotective response to counteract oxidative stress-induced pathological injuries. A decrease in Nrf2 signaling is associated with the progression of diseases. Recent evidence indicates that targeting Nrf2 can be a novel therapy to mitigate inflammation, improve innate antibacterial defenses, and restore corticosteroid responses in patients with COPD.


Assuntos
Inflamação/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/complicações , Infecções Respiratórias/prevenção & controle , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/complicações , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Infecções Respiratórias/complicações , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA