Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 1343, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420139

RESUMO

Cancer cells adeptly manipulate the tumor microenvironment (TME) to evade host antitumor immunity. However, the role of cancer cell-intrinsic signaling in shaping the immunosuppressive TME remains unclear. Here, we found that the Hippo pathway in cancer cells orchestrates the TME by influencing the composition of cancer-associated fibroblasts (CAFs). In a 4T1 mouse breast cancer model, Hippo pathway kinases, large tumor suppressor 1 and 2 (LATS1/2), promoted the formation of neural cell adhesion molecule 1 (NCAM1)+alpha-smooth muscle actin (αSMA)+ CAFs expressing the transforming growth factor-ß, which is associated with T cell inactivation and dysfunction. Depletion of LATS1/2 in cancer cells resulted in a less immunosuppressive TME, indicated by the reduced proportions of NCAM1+αSMA+ CAFs and dysfunctional T cells. Notably, similar Hippo pathway-induced NCAM1+αSMA+ CAFs were observed in human breast cancer, highlighting the potential of TME-manipulating strategies to reduce immunosuppression in cancer immunotherapy.


Assuntos
Actinas , Antígeno CD56 , Via de Sinalização Hippo , Microambiente Tumoral , Animais , Camundongos , Actinas/metabolismo , Humanos , Feminino , Antígeno CD56/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Transdução de Sinais , Fibroblastos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia
2.
BMC Cancer ; 22(1): 578, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610613

RESUMO

BACKGROUND: High-mobility group box 1 (HMGB1) is increased in breast cancer cells as the result of exposure to the secreted substances from cancer-associated fibroblasts and plays a crucial role in cancer progression and drug resistance. Its effect, however, on the expression of programmed death ligand 1 (PD-L1) in breast cancer cells has not been investigated. This study aimed to investigate the mechanism of HMGB1 through receptors for advanced glycation end products (RAGE) on cell migration/invasion and PD-L1 expression in breast cancer cells. METHODS: A 3-dimensional (3-D) migration and invasion assay and Western blotting analysis to evaluate the function and the mechanism under recombinant HMGB1 (rHMGB1) treatment with knockdown of RAGE using shRAGE and PI3K/AKT inhibitors was performed. RESULTS: The results revealed that rHMGB1 induced MDA-MB-231 cell migration and invasion. The knockdown of RAGE using shRAGE and PI3K/AKT inhibitors attenuated 3-D migration and invasion in response to rHMGB1 compared to mock cells. PD-L1 up-regulation was observed in both parental MDA-MB-231 (P) and MDA-MB-231 metastasis to bone marrow (BM) cells treated with rHMGB1, and these effects were alleviated in RAGE-knock down (KD) breast cancer cells as well as in PI3K/AKT inhibitor-treated cells. CONCLUSIONS: Collectively, these findings indicate that HMGB1-RAGE through PI3K/AKT signaling promotes not only breast cancer cell invasion but also PD-L1 expression which leads to the destruction of the effector T cells. The attenuating HMGB1-RAGE-PI3K/AKT pathway may help to attenuate breast cancer cell aggressive phenotypes.


Assuntos
Antígenos de Neoplasias , Antígeno B7-H1 , Neoplasias da Mama , Proteína HMGB1 , Proteínas Quinases Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Antígenos de Neoplasias/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA